### CETIFICATION

SDG No:

FA34192

Site:

BMSMC - Building 5 Area

Humacao, PR

Laboratory:

Accutest, Florida

Matrix:

Soil/Groundwater

SUMMARY:

Samples (Table 1) were collected on the BRSMC facility – Building 5 Area. The BMSMC facility is located in Humacao, PR. Samples were taken May 13-23, 2016 and were analyzed in Accutest, Florida that reported the data under SDG No.: FA34192. Results were validated using the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. The data sample organic data samples summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

| SAMPLE ID | SAMPLE<br>DESCRIPTION | MATRIX                   | ANALYSIS PERFORMED |
|-----------|-----------------------|--------------------------|--------------------|
| FA34192-1 | SB-104-GWD            | Groundwater              | VOA TCL List       |
| FA34192-2 | BPEB-25               | AQ – Equipment<br>Blank  | VOA TCL List       |
| FA34192-3 | RA4-GWD               | Groundwater              | VOA TCL List       |
| FA34192-4 | SB-104-GWS            | Groundwater              | VOA TCL List       |
| FA34192-5 | MW19 (1-2)            | Soil                     | VOA TCL List       |
| FA34192-6 | MW19 (5-6)            | Soil                     | VOA TCL List       |
| FA34192-7 | TB052316              | AQ – Trip Blank<br>Water | VOA TCL List       |

Mendez

IC # 180

584954

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

June 10, 2016

### Report of Analysis

Page 1 of 2

Client Sample ID: SB-104-GWD Lab Sample ID: FA34192-1

Matrix: Method:

AQ - Ground Water SW846 8260C

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: Date Received:

Q

J

J

05/20/16 05/24/16

Percent Solids: n/a

File ID **Analytical Batch** DF Analyzed Prep Date Prep Batch By Run #1 J0976786.D 05/25/16 VJ5314 DP 1 n/a n/a

Run #2

Project:

Purge Volume

Run #1 5.0 ml

Run #2

### VOA TCL List (SOM02.0)

| CAS No.    | Compound                    | Result | RL  | MDL  | Unit |
|------------|-----------------------------|--------|-----|------|------|
| 67-64-1    | Acetone                     | ND     | 25  | 10   | ug/l |
| 71-43-2    | Benzene                     | ND     | 1.0 | 0.20 | ug/l |
| 100-44-7   | Benzyl Chloride             | ND     | 2.0 | 0.44 | ug/I |
| 74-97-5    | Bromochloromethane          | ND     | 1.0 | 0.42 | ug/l |
| 75-27-4    | Bromodichloromethane        | ND     | 1.0 | 0.24 | ug/l |
| 75-25-2    | Bromoform                   | ND     | 1.0 | 0.46 | ug/l |
| 78-93-3    | 2-Butanone (MEK)            | ND     | 5.0 | 2.6  | ug/l |
| 75-15-0    | Carbon Disulfide            | 0.42   | 2.0 | 0.23 | ug/l |
| 56-23-5    | Carbon Tetrachloride        | ND     | 1.0 | 0.30 | ug/l |
| 108-90-7   | Chlorobenzene               | ND     | 1.0 | 0.20 | ug/l |
| 75-00-3    | Chloroethane                | ND     | 2.0 | 0.63 | ug/l |
| 67-66-3    | Chloroform                  | ND     | 1.0 | 0.30 | ug/l |
| 110-82-7   | Cyclohexane                 | ND     | 1.0 | 0.26 | ug/l |
| 124-48-1   | Dibromochloromethane        | ND     | 1.0 | 0.26 | ug/l |
| 96-12-8    | 1,2-Dibromo-3-chloropropane | ND     | 5.0 | 0.81 | ug/l |
| 106-93-4   | 1,2-Dibromoethane           | ND     | 2.0 | 0.33 | ug/l |
| 75-71-8    | Dichlorodifluoromethane a   | ND     | 2.0 | 0.50 | ug/l |
| 95-50-1    | 1,2-Dichlorobenzene         | 3.8    | 0.1 | 0.27 | ug/i |
| 541-73-1   | 1,3-Dichlorobenzene         | ND     | 1.0 | 0.24 | ug/l |
| 106-46-7   | 1,4-Dichlorobenzene         | 0.87   | 1.0 | 0.39 | ug/l |
| 75-34-3    | 1,1-Dichloroethane          | ND     | 1.0 | 0.26 | ug/l |
| 107-06-2   | 1,2-Dichloroethane          | ND     | 1.0 | 0.28 | ug/l |
| 75-35-4    | 1, I-Dichloroethylene       | ND     | 1.0 | 0.22 | ug/l |
| 156-59-2   | cis-1,2-Dichloroethylene    | ND     | 1.0 | 0.31 | ug/l |
| 156-60-5   | trans-1,2-Dichloroethylene  | ND     | 1.0 | 0.33 | ug/l |
| 78-87-5    | 1,2-Dichloropropane         | ND     | 1.0 | 0.34 | ug/l |
| 10061-01-5 | cis-1,3-Dichloropropene     | ND     | 1.0 | 0.26 | ug/l |
| 10061-02-6 | trans-1,3-Dichloropropene   | ND     | 1.0 | 0.25 | ug/l |
| 100-41-4   | Ethylbenzene                | ND     | 1.0 | 0.25 | ug/l |
| 76-13-1    | Freon 113                   | ND     | 1.0 | 0.32 | ug/l |
| 591-78-6   | 2-Hexanone                  | ND     | 10  | 2.0  | ug/l |
| 98-82-8    | Isopropylbenzene            | ND     | 1.0 | 0.33 | ug/l |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

**E** = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

### 1.2

### Report of Analysis

Client Sample ID: SB-104-GWD Lab Sample ID: FA34192-1

Matrix: AQ - Grou Method: SW846 82

AQ - Ground Water SW846 8260C

Date Received: 05/24/16
Percent Solids: n/a

Date Sampled:

05/20/16

Project: BMSMC, Building 5 Area, Humacao, PR

### VOA TCL List (SOM02.0)

| CAS No.    | Compound                    | Result | RL     | MDL  | Units | Q  |
|------------|-----------------------------|--------|--------|------|-------|----|
| 99-87-6    | p-Isopropyltoluene          | ND     | 1.0    | 0.28 | ug/l  |    |
| 79-20-9    | Methyl Acetate              | ND     | 20     | 5.0  | ug/l  |    |
| 74-83-9    | Methyl Bromide              | ND     | 2.0    | 0.50 | ug/l  |    |
| 74-87-3    | Methyl Chloride             | ND     | 2.0    | 0.50 | ug/l  |    |
| 108-87-2   | Methylcyclohexane           | ND     | 1.0    | 0.23 | ug/l  |    |
| 75-09-2    | Methylene Chloride          | ND     | 5.0    | 2.0  | ug/l  |    |
| 108-10-1   | 4-Methyl-2-pentanone (MIBK) | ND     | 5.0    | 1.4  | ug/l  |    |
| 1634-04-4  | Methyl Tert Butyl Ether     | ND     | 1.0    | 0.20 | ug/l  |    |
| 100-42-5   | Styrene                     | ND     | 1.0    | 0.24 | ug/l  |    |
| 75-85-4    | Tert-Amyl Alcohol           | ND     | 20     | 6.0  | ug/l  |    |
| 75-65-0    | Tert-Butyl Alcohol          | ND     | 20     | 9.1  | ug/l  |    |
| 79-34-5    | 1,1,2,2-Tetrachloroethane   | ND     | 1.0    | 0.33 | ug/l  |    |
| 127-18-4   | Tetrachloroethylene         | ND     | 1.0    | 0.30 | ug/l  |    |
| 109-99-9   | Tetrahydrofuran             | ND     | 5.0    | 1.4  | ug/l  |    |
| 108-88-3   | Toluene                     | ND     | 1.0    | 0.20 | ug/l  |    |
| 87-61-6    | 1,2,3-Trichlorobenzene      | ND     | 2.0    | 0.51 | ug/l  |    |
| 120-82-1   | 1,2,4-Trichlorobenzene      | ND     | 2.0    | 0.50 | ug/l  |    |
| 71-55-6    | 1,1,1-Trichloroethane       | ND     | 1.0    | 0.20 | ug/l  |    |
| 79-00-5    | 1,1,2-Trichloroethane       | ND     | 1.0    | 0.37 | ug/l  |    |
| 79-01-6    | Trichloroethylene           | ND     | 1.0    | 0.27 | ug/l  |    |
| 75-69-4    | Trichlorofluoromethane a    | ND     | 2.0    | 0.50 | ug/l  |    |
| 95-63-6    | 1,2,4-Trimethylbenzene      | ND     | 1.0    | 0.20 | ug/I  |    |
| 75-01-4    | Vinyl Chloride              | ND     | 1.0    | 0.31 | ug/l  |    |
|            | m,p-Xylene                  | ND     | 2.0    | 0.30 | ug/l  |    |
| 95-47-6    | o-Xylene                    | ND     | 1.0    | 0.26 | ug/l  |    |
| CAS No.    | Surrogate Recoveries        | Run#1  | Run# 2 | Lim  | its   |    |
| 1868-53-7  | Dibromofluoromethane        | 102%   |        | 83-1 | 18%   |    |
| 17060-07-0 | 1,2-Dichloroethane-D4       | 104%   |        | 79-1 | 25%   |    |
| 2037-26-5  | Toluene-D8                  | 103%   |        | 85-1 | 12%   | 1  |
| 460-00-4   | 4-Bromofluorobenzene        | 103%   |        | 83-1 | 18%   | 34 |

(a) Associated CCV outside control limits.



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

### SGS Accutest

### Report of Analysis

Page 1 of 2

VJ5314

Client Sample ID: BPEB-25

Lab Sample ID: FA34192-2 Matrix:

Method:

AQ - Equipment Blank

1

SW846 8260C

Project: BMSMC, Building 5 Area, Humacao, PR

05/20/16 Date Sampled:

05/24/16 Date Received:

Percent Solids:

n/a

Q

File ID **Analytical Batch** DF Analyzed Prep Date Prep Batch By

DP

n/a

05/25/16

Run #1 Run #2

**Purge Volume** 

J0976787.D

Run #1 Run #2

VOA TCL List (SOM02.0)

5.0 ml

| CAS No.    | Compound                    | Result | RL  | MDL  | Units |
|------------|-----------------------------|--------|-----|------|-------|
| 67-64-1    | Acetone                     | ND     | 25  | 10   | ug/l  |
| 71-43-2    | Benzene                     | ND     | 1.0 | 0.20 | ug/l  |
| 100-44-7   | Benzyl Chloride             | ND     | 2.0 | 0.44 | ug/l  |
| 74-97-5    | Bromochloromethane          | ND     | 1.0 | 0.42 | ug/l  |
| 75-27-4    | Bromodichloromethane        | ND     | 1.0 | 0.24 | ug/l  |
| 75-25-2    | Bromoform                   | ND     | 1.0 | 0.46 | ug/l  |
| 78-93-3    | 2-Butanone (MEK)            | ND     | 5.0 | 2.6  | ug/l  |
| 75-15-0    | Carbon Disulfide            | ND     | 2.0 | 0.23 | ug/l  |
| 56-23-5    | Carbon Tetrachloride        | ND     | 1.0 | 0.30 | ug/l  |
| 108-90-7   | Chlorobenzene               | ND     | 1.0 | 0.20 | ug/l  |
| 75-00-3    | Chloroethane                | ND     | 2.0 | 0.63 | ug/l  |
| 67-66-3    | Chloroform                  | ND     | 1.0 | 0.30 | ug/l  |
| 110-82-7   | Cyclohexane                 | ND     | 1.0 | 0.26 | ug/l  |
| 124-48-1   | Dibromochloromethane        | ND     | 1.0 | 0.26 | ug/l  |
| 96-12-8    | 1,2-Dibromo-3-chloropropane | ND     | 5.0 | 0.81 | ug/l  |
| 106-93-4   | 1,2-Dibromoethane           | ND     | 2.0 | 0.33 | ug/l  |
| 75-71-8    | Dichlorodifluoromethane a   | ND     | 2.0 | 0.50 | ug/l  |
| 95-50-1    | 1,2-Dichlorobenzene         | ND     | 1.0 | 0.27 | ug/l  |
| 541-73-1   | 1,3-Dichlorobenzene         | ND     | 1.0 | 0.24 | ug/l  |
| 106-46-7   | 1,4-Dichlorobenzene         | ND     | 1.0 | 0.39 | ug/l  |
| 75-34-3    | 1,1-Dichloroethane          | ND     | 1.0 | 0.26 | ug/l  |
| 107-06-2   | 1,2-Dichloroethane          | ND     | 1.0 | 0.28 | ug/l  |
| 75-35-4    | 1,1-Dichloroethylene        | ND     | 1.0 | 0.22 | ug/l  |
| 156-59-2   | cis-1,2-Dichloroethylene    | ND     | 1.0 | 0.31 | ug/l  |
| 156-60-5   | trans-1,2-Dichloroethylene  | ND     | 1.0 | 0.33 | ug/l  |
| 78-87-5    | 1,2-Dichloropropane         | ND     | 1.0 | 0.34 | ug/l  |
| 10061-01-5 | cis-1,3-Dichloropropene     | ND     | 1.0 | 0.26 | ug/l  |
| 10061-02-6 | trans-1,3-Dichloropropene   | ND     | 1.0 | 0.25 | ug/l  |
| 100-41-4   | Ethylbenzene                | ND     | 1.0 | 0.25 | ug/l  |
| 76-13-1    | Freon 113                   | ND     | 1.0 | 0.32 | ug/l  |
| 591-78-6   | 2-Hexanone                  | ND     | 10  | 2.0  | ug/l  |



ND = Not detected

98-82-8

MDL = Method Detection Limit

ND

RL = Reporting Limit

E = Indicates value exceeds calibration range

Isopropylbenzene

J = Indicates an estimated value

ug/l

0.33

1.0

B = Indicates analyte found in associated method blank

### 2 4

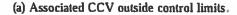
### Report of Analysis

Client Sample ID: BPEB-25 Lab Sample ID: FA34192-2

AQ - Equipment Blank

Date Sampled: 05/20/16
Date Received: 05/24/16
Percent Solids: n/a

Method:


Matrix:

SW846 8260C

Project: BMSMC, Building 5 Area, Humacao, PR

### VOA TCL List (SOM02.0)

| CAS No.    | Compound                    | Result | RL     | MDL    | Units | Q  |
|------------|-----------------------------|--------|--------|--------|-------|----|
| 99-87-6    | p-Isopropyltoluene          | ND     | 1.0    | 0.28   | ug/l  |    |
| 79-20-9    | Methyl Acetate              | ND     | 20     | 5.0    | ug/l  |    |
| 74-83-9    | Methyl Bromide              | ND     | 2.0    | 0.50   | ug/l  |    |
| 74-87-3    | Methyl Chloride             | ND     | 2.0    | 0.50   | ug/l  |    |
| 108-87-2   | Methylcyclohexane           | ND     | 1.0    | 0.23   | ug/l  |    |
| 75-09-2    | Methylene Chloride          | ND     | 5.0    | 2.0    | ug/l  |    |
| 108-10-1   | 4-Methyl-2-pentanone (MIBK) | ND     | 5.0    | 1.4    | ug/l  |    |
| 1634-04-4  | Methyl Tert Butyl Ether     | ND     | 1.0    | 0.20   | ug/l  |    |
| 100-42-5   | Styrene                     | ND     | 1.0    | 0.24   | ug/l  |    |
| 75-85-4    | Tert-Amyl Alcohol           | ND     | 20     | 6.0    | ug/l  |    |
| 75-65-0    | Tert-Butyl Alcohol          | ND     | 20     | 9.1    | ug/l  |    |
| 79-34-5    | 1,1,2,2-Tetrachloroethane   | ND     | 1.0    | 0.33   | ug/l  |    |
| 127-18-4   | Tetrachloroethylene         | ND     | 1.0    | 0.30   | ug/l  |    |
| 109-99-9   | Tetrahydrofuran             | ND     | 5.0    | 1.4    | ug/l  |    |
| 108-88-3   | Toluene                     | ND     | 1.0    | 0.20   | ug/l  |    |
| 87-61-6    | 1,2,3-Trichlorobenzene      | ND     | 2.0    | 0.51   | ug/l  |    |
| 120-82-1   | 1,2,4-Trichlorobenzene      | ND     | 2.0    | 0.50   | ug/l  |    |
| 71-55-6    | 1,1,1-Trichloroethane       | ND     | 1.0    | 0.20   | ug/l  |    |
| 79-00-5    | 1,1,2-Trichloroethane       | ND     | 1.0    | 0.37   | ug/l  |    |
| 79-01-6    | Trichloroethylene           | ND     | 1.0    | 0.27   | ug/l  |    |
| 75-69-4    | Trichlorofluoromethane a    | ND     | 2.0    | 0.50   | ug/l  |    |
| 95-63-6    | 1,2,4-Trimethylbenzene      | ND     | 1.0    | 0.20   | ug/l  |    |
| 75-01-4    | Vinyl Chloride              | ND     | 1.0    | 0.31   | ug/l  |    |
|            | m,p-Xylene                  | ND     | 2.0    | 0.30   | ug/i  |    |
| 95-47-6    | o-Xylene                    | ND     | 1.0    | 0.26   | ug/l  |    |
| CAS No.    | Surrogate Recoveries        | Run#1  | Run# 2 | Limits |       |    |
| 1868-53-7  | Dibromofluoromethane        | 101%   |        | 83-1   | 18%   |    |
| 17060-07-0 | 1,2-Dichloroethane-D4       | 104%   |        | 79-1   | 25%   |    |
| 2037-26-5  | Toluene-D8                  | 104%   |        | 85-1   | 12%   | Y. |
| 460-00-4   | 4-Bromofluorobenzene        | 104%   |        | 83-1   | 18%   | 13 |





ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

### **SGS** Accutest

### Report of Analysis

Page 1 of 2

Client Sample ID: RA4-GWD

Lab Sample ID: Matrix:

FA34192-3 AQ - Ground Water Date Sampled: Date Received:

05/23/16 05/24/16

Method:

SW846 8260C

Percent Solids:

n/a

Project:

BMSMC, Building 5 Area, Humacao, PR

**Analytical Batch** 

Run #1

File ID DF J0976788.D

Analyzed By 05/25/16 DP Prep Date n/a

Prep Batch n/a

VJ5314

Run #2

Purge Volume

5.0 ml

Run #1 Run #2

VOA TCL List (SOM02.0)

| CAS No.    | Compound                    | Result | RL  | MDL  | Units | Q |
|------------|-----------------------------|--------|-----|------|-------|---|
| 67-64-1    | Acetone                     | ND     | 25  | 10   | ug/l  |   |
| 71-43-2    | Benzene                     | ND     | 1.0 | 0.20 | ug/l  |   |
| 100-44-7   | Benzyl Chloride             | ND     | 2.0 | 0.44 | ug/l  |   |
| 74-97-5    | Bromochloromethane          | ND     | 1.0 | 0.42 | ug/l  |   |
| 75-27-4    | Bromodichloromethane        | ND     | 1.0 | 0.24 | ug/l  |   |
| 75-25-2    | Bromoform                   | ND     | 1.0 | 0.46 | ug/l  |   |
| 78-93-3    | 2-Butanone (MEK)            | ND     | 5.0 | 2.6  | ug/l  |   |
| 75-15-0    | Carbon Disulfide            | 0.33   | 2.0 | 0.23 | ug/l  | J |
| 56-23-5    | Carbon Tetrachloride        | ND     | 1.0 | 0.30 | ug/l  |   |
| 108-90-7   | Chlorobenzene               | 2.3    | 1.0 | 0.20 | ug/l  |   |
| 75-00-3    | Chloroethane                | ND     | 2.0 | 0.63 | ug/I  |   |
| 67-66-3    | Chloroform                  | ND     | 1.0 | 0.30 | ug/l  |   |
| 110-82-7   | Cyclohexane                 | ND     | 1.0 | 0.26 | ug/l  |   |
| 124-48-1   | Dibromochloromethane        | ND     | 1.0 | 0.26 | ug/l  |   |
| 96-12-8    | 1,2-Dibromo-3-chloropropane | ND     | 5.0 | 0.81 | ug/l  |   |
| 106-93-4   | 1,2-Dibromoethane           | ND     | 2.0 | 0.33 | ug/l  |   |
| 75-71-8    | Dichlorodifluoromethane *   | ND     | 2.0 | 0.50 | ug/l  |   |
| 95-50-1    | 1,2-Dichlorobenzene         | 1.2    | 1.0 | 0.27 | ug/l  |   |
| 541-73-1   | 1,3-Dichlorobenzene         | ND     | 1.0 | 0.24 | ug/l  |   |
| 106-46-7   | 1,4-Dichlorobenzene         | 0.58   | 1.0 | 0.39 | ug/l  | J |
| 75-34-3    | 1,1-Dichloroethane          | ND     | 1.0 | 0.26 | ug/l  |   |
| 107-06-2   | 1,2-Dichloroethane          | ND     | 1.0 | 0.28 | ug/l  |   |
| 75-35-4    | 1,1-Dichloroethylene        | ND     | 1.0 | 0.22 | ug/l  |   |
| 156-59-2   | cis-1,2-Dichloroethylene    | ND     | 1.0 | 0.31 | ug/I  |   |
| 156-60-5   | trans-1,2-Dichloroethylene  | ND     | 1.0 | 0.33 | ug/l  |   |
| 78-87-5    | 1,2-Dichloropropane         | ND     | 1.0 | 0.34 | ug/l  |   |
| 10061-01-5 | cis-1,3-Dichloropropene     | ND     | 1.0 | 0.26 | ug/l  |   |
| 10061-02-6 | trans-1,3-Dichloropropene   | ND     | 1.0 | 0.25 | ug/l  |   |
| 100-41-4   | Ethylbenzene                | ND     | 1.0 | 0.25 | ug/l  |   |
| 76-13-1    | Freon 113                   | ND     | 1.0 | 0.32 | ug/l  |   |
| 591-78-6   | 2-Hexanone                  | ND     | 10  | 2.0  | ug/l  |   |
| 98-82-8    | Isopropylbenzene            | 0.82   | 1.0 | 0.33 | ug/l  | J |

dael Infant Méndez

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

**E** = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Matrix:

Method:

Project:

### Report of Analysis

Client Sample ID: RA4-GWD Lab Sample ID: FA34192-3

AQ - Ground Water

SW846 8260C BMSMC, Building 5 Area, Humacao, PR Date Sampled: 05/23/16

Date Received: 05/24/16

Percent Solids: n/a

### VOA TCL List (SOM02.0)

| CAS No.    | Compound                    | Result | RL MDL |       | Units | Q |
|------------|-----------------------------|--------|--------|-------|-------|---|
| 99-87-6    | p-Isopropyltoluene          | ND     | 1.0    | 0.28  | ug/l  |   |
| 79-20-9    | Methyl Acetate              | ND     | 20     | 5.0   | ug/l  |   |
| 74-83-9    | Methyl Bromide              | ND     | 2.0    | 0.50  | ug/l  |   |
| 74-87-3    | Methyl Chloride             | ND     | 2.0    | 0.50  | ug/l  |   |
| 108-87-2   | Methylcyclohexane           | ND     | 1.0    | 0.23  | ug/l  |   |
| 75-09-2    | Methylene Chloride          | ND     | 5.0    | 2.0   | ug/l  |   |
| 108-10-1   | 4-Methyl-2-pentanone (MIBK) | ND     | 5.0    | 1.4   | ug/l  |   |
| 1634-04-4  | Methyl Tert Butyl Ether     | 1.4    | 1.0    | 0.20  | ug/l  |   |
| 100-42-5   | Styrene                     | ND     | 1.0    | 0.24  | ug/l  |   |
| 75-85-4    | Tert-Amyl Alcohol           | ND     | 20     | 6.0   | ug/l  |   |
| 75-65-0    | Tert-Butyl Alcohol          | ND     | 20     | 9.1   | ug/I  |   |
| 79-34-5    | 1,1,2,2-Tetrachloroethane   | ND     | 1.0    | 0.33  | ug/l  |   |
| 127-18-4   | Tetrachloroethylene         | ND     | 1.0    | 0.30  | ug/l  |   |
| 109-99-9   | Tetrahydrofuran             | ND     | 5.0    | 1.4   | ug/l  |   |
| 108-88-3   | Toluene                     | ND     | 1.0    | 0.20  | ug/l  |   |
| 87-61-6    | 1,2,3-Trichlorobenzene      | ND     | 2.0    | 0.51  | ug/l  |   |
| 120-82-1   | 1,2,4-Trichlorobenzene      | ND     | 2.0    | 0.50  | ug/l  |   |
| 71-55-6    | 1,1,1-Trichloroethane       | ND     | 1.0    | 0.20  | ug/l  |   |
| 79-00-5    | 1,1,2-Trichloroethane       | ND     | 1.0    | 0.37  | ug/l  |   |
| 79-01-6    | Trichloroethylene           | ND     | 1.0    | 0.27  | ug/l  |   |
| 75-69-4    | Trichlorofluoromethane a    | ND     | 2.0    | 0.50  | ug/l  |   |
| 95-63-6    | 1,2,4-Trimethylbenzene      | ND     | 1.0    | 0.20  | ug/l  |   |
| 75-01-4    | Vinyl Chloride              | ND     | 1.0    | 0.31  | ug/l  |   |
|            | m,p-Xylene                  | ND     | 2.0    | 0.30  | ug/l  |   |
| 95-47-6    | o-Xylene                    | ND     | 1.0    | 0.26  | ug/l  |   |
| CAS No.    | Surrogate Recoveries        | Run#1  | Run# 2 | Limi  | ts    |   |
| 1868-53-7  | Dibromofluoromethane        | 102%   |        | 83-1  | 18%   |   |
| 17060-07-0 | 1,2-Dichloroethane-D4       | 103%   |        | 79-13 | 25%   |   |
| 2037-26-5  | Toluene-D8                  | 104%   |        | 85-13 | 12%   |   |
| 460-00-4   | 4-Bromofluorobenzene        | 106%   |        | 83-1  | 18%   | 7 |

(a) Associated CCV outside control limits.



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

### SGS Accutest

### Report of Analysis

Page 1 of 2

Client Sample ID: SB-104-GWS Lab Sample ID:

FA34192-4

AQ - Ground Water

Date Sampled: Date Received:

05/23/16 05/24/16

Matrix: Method: Project:

SW846 8260C BMSMC, Building 5 Area, Humacao, PR Percent Solids:

File ID **Analytical Batch** DF Analyzed By Prep Date Prep Batch J0976789.D Run #1 05/25/16 VJ5314 DP n/a n/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

### VOA TCL List (SOM02.0)

| CAS No.    | Compound                    | Result | RL  | MDL  | Units | Q   |
|------------|-----------------------------|--------|-----|------|-------|-----|
| 67-64-1    | Acetone                     | ND     | 25  | 10   | ug/l  |     |
| 71-43-2    | Benzene                     | ND     | 1.0 | 0.20 | ug/l  |     |
| 100-44-7   | Benzyl Chloride             | ND     | 2.0 | 0.44 | ug/l  |     |
| 74-97-5    | Bromochloromethane          | ND     | 1.0 | 0.42 | ug/l  |     |
| 75-27-4    | Bromodichloromethane        | ND     | 1.0 | 0.24 | ug/l  |     |
| 75-25-2    | Bromoform                   | ND     | 1.0 | 0.46 | ug/l  |     |
| 78-93-3    | 2-Butanone (MEK)            | ND     | 5.0 | 2.6  | ug/l  |     |
| 75-15-0    | Carbon Disulfide            | ND     | 2.0 | 0.23 | ug/l  |     |
| 56-23-5    | Carbon Tetrachloride        | ND     | 1.0 | 0.30 | ug/l  |     |
| 108-90-7   | Chlorobenzene               | ND     | 1.0 | 0.20 | ug/l  |     |
| 75-00-3    | Chloroethane                | ND     | 2.0 | 0.63 | ug/l  |     |
| 67-66-3    | Chloroform                  | ND     | 1.0 | 0.30 | ug/l  |     |
| 110-82-7   | Cyclohexane                 | ND     | 1.0 | 0.26 | ug/l  |     |
| 124-48-1   | Dibromochloromethane        | ND     | 1.0 | 0.26 | ug/l  |     |
| 96-12-8    | 1,2-Dibromo-3-chloropropane | ND     | 5.0 | 0.81 | ug/l  |     |
| 106-93-4   | 1,2-Dibromoethane           | ND     | 2.0 | 0.33 | ug/l  |     |
| 75-71-8    | Dichlorodifluoromethane *   | ND     | 2.0 | 0.50 | ug/l  |     |
| 95-50-1    | 1,2-Dichlorobenzene         | ND     | 1.0 | 0.27 | ug/l  |     |
| 541-73-1   | 1,3-Dichlorobenzene         | ND     | 1.0 | 0.24 | ug/l  |     |
| 106-46-7   | 1,4-Dichlorobenzene         | ND     | 1.0 | 0.39 | ug/l  |     |
| 75-34-3    | 1,1-Dichloroethane          | ND     | 1.0 | 0.26 | ug/l  |     |
| 107-06-2   | 1,2-Dichloroethane          | ND     | 1.0 | 0.28 | .ug/l |     |
| 75-35-4    | 1,1-Dichloroethylene        | ND     | 1.0 | 0.22 | ug/l  |     |
| 156-59-2   | cis-1,2-Dichloroethylene    | ND     | 1.0 | 0.31 | ug/l  |     |
| 156-60-5   | trans-1,2-Dichloroethylene  | ND     | 1.0 | 0.33 | ug/l  |     |
| 78-87-5    | 1,2-Dichloropropane         | ND     | 1.0 | 0.34 | ug/l  | 18  |
| 10061-01-5 | cis-1,3-Dichloropropene     | ND     | 1.0 | 0.26 | ug/l  | / ~ |
| 10061-02-6 | trans-1,3-Dichloropropene   | ND     | 1.0 | 0.25 | ug/l  | 133 |
| 100-41-4   | Ethylbenzene                | ND     | 1.0 | 0.25 | ug/l  | 153 |
| 76-13-1    | Freon 113                   | ND     | 1.0 | 0.32 | ug/l  | 10  |
| 591-78-6   | 2-Hexanone                  | ND     | 10  | 2.0  | ug/l  | 10  |
| 98-82-8    | Isopropylbenzene            | ND     | 1.0 | 0.33 | ug/l  | 1   |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

### 4

### Report of Analysis

Client Sample ID: SB-104-GWS Lab Sample ID: FA34192-4

Matrix: Method:

Project:

AQ - Ground Water

SW846 8260C

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 05/23/16 Date Received: 05/24/16

Percent Solids: n/a

### VOA TCL List (SOM02.0)

| CAS No.    | Compound                    | Result | RL     | MDL  | Units | Q |
|------------|-----------------------------|--------|--------|------|-------|---|
| 99-87-6    | p-Isopropyltoluene          | ND     | 1.0    | 0.28 | ug/l  |   |
| 79-20-9    | Methyl Acetate              | ND     | 20     | 5.0  | ug/l  |   |
| 74-83-9    | Methyl Bromide              | ND     | 2.0    | 0.50 | ug/l  |   |
| 74-87-3    | Methyl Chloride             | ND     | 2.0    | 0.50 | ug/l  |   |
| 108-87-2   | Methylcyclohexane           | ND     | 1.0    | 0.23 | ug/l  |   |
| 75-09-2    | Methylene Chloride          | ND     | 5.0    | 2.0  | ug/l  |   |
| 108-10-1   | 4-Methyl-2-pentanone (MIBK) | ND     | 5.0    | 1.4  | ug/l  |   |
| 1634-04-4  | Methyl Tert Butyl Ether     | ND     | 1.0    | 0.20 | ug/l  |   |
| 100-42-5   | Styrene                     | ND     | 1.0    | 0.24 | ug/l  |   |
| 75-85-4    | Tert-Amyl Alcohol           | ND     | 20     | 6.0  | ug/l  |   |
| 75-65-0    | Tert-Butyl Alcohol          | ND     | 20     | 9.1  | ug/l  |   |
| 79-34-5    | 1,1,2,2-Tetrachloroethane   | ND     | 1.0    | 0.33 | ug/l  |   |
| 127-18-4   | Tetrachloroethylene         | ND     | 1.0    | 0.30 | ug/l  |   |
| 109-99-9   | Tetrahydrofuran             | ND     | 5.0    | 1.4  | ug/l  |   |
| 108-88-3   | Toluene                     | ND     | 1.0    | 0.20 | ug/I  |   |
| 87-61-6    | 1,2,3-Trichlorobenzene      | ND     | 2.0    | 0.51 | ug/l  |   |
| 120-82-1   | 1,2,4-Trichlorobenzene      | ND     | 2.0    | 0.50 | ug/l  |   |
| 71-55-6    | 1,1,1-Trichloroethane       | ND     | 1.0    | 0.20 | ug/l  |   |
| 79-00-5    | 1,1,2-Trichloroethane       | ND     | 1.0    | 0.37 | ug/l  |   |
| 79-01-6    | Trichloroethylene           | ND     | 1.0    | 0.27 | ug/l  |   |
| 75-69-4    | Trichlorofluoromethane *    | ND     | 2.0    | 0.50 | ug/l  |   |
| 95-63-6    | 1,2,4-Trimethylbenzene      | ND     | 1.0    | 0.20 | ug/l  |   |
| 75-01-4    | Vinyl Chloride              | ND     | 1.0    | 0.31 | ug/l  |   |
|            | m,p-Xylene                  | ND     | 2.0    | 0.30 | ug/i  |   |
| 95-47-6    | o-Xylene                    | ND     | 1.0    | 0.26 | ug/l  |   |
| CAS No.    | Surrogate Recoveries        | Run#1  | Run# 2 | Lim  | its   |   |
| 1868-53-7  | Dibromofluoromethane        | 102%   |        | 83-1 | 18%   |   |
| 17060-07-0 | 1,2-Dichloroethane-D4       | 103%   |        | 79-1 | 25%   |   |
| 2037-26-5  | Toluene-D8                  | 100%   |        | 85-1 | 12%   |   |
| 460-00-4   | 4-Bromofluorobenzene        | 106%   |        | 83-1 | 18%   |   |

(a) Associated CCV outside control limits.



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

] = Indicates an estimated value

B = Indicates analyte found in associated method blank

### **SGS** Accutest

### Report of Analysis

By

EP

Page 1 of 2

Client Sample ID: MW19 (1-2) Lab Sample ID:

FA34192-5

SO - Soil

Date Sampled: Date Received:

05/23/16

Matrix: Method:

SW846 8260C SW846 5035

DF

1

05/24/16

Percent Solids: 86.6

Project:

BMSMC, Building 5 Area, Humacao, PR

Run #1

File ID Y28873.D Analyzed 05/26/16

Prop Date 05/24/16 15:00 Prep Batch n/a

**Analytical Batch** VY1166

Run #2

**Initial Weight** 

**Final Volume** 

Run #1

5.06 g

5.0 ml

Run #2

### VOA TCL List (SOM02.0)

| CAS No.    | Compound                    | Result | RL  | MDL | Units | Q     |
|------------|-----------------------------|--------|-----|-----|-------|-------|
| 67-64-1    | Acetone                     | 105    | 57  | 12  | ug/kg |       |
| 71-43-2    | Benzene                     | ND     | 5.7 | 1.4 | ug/kg |       |
| 100-44-7   | Benzyl Chloride             | ND     | 5.7 | 1.6 | ug/kg |       |
| 74-97-5    | Bromochloromethane          | ND     | 5.7 | 1.3 | ug/kg |       |
| 75-27-4    | Bromodichloromethane        | ND     | 5.7 | 1.1 | ug/kg |       |
| 75-25-2    | Bromoform                   | ND     | 5.7 | 1.1 | ug/kg |       |
| 78-93-3    | 2-Butanone (MEK)            | ND     | 29  | 10  | ug/kg |       |
| 75-15-0    | Carbon Disulfide            | ND     | 5.7 | 1.1 | ug/kg |       |
| 56-23-5    | Carbon Tetrachloride        | ND     | 5.7 | 2.0 | ug/kg |       |
| 108-90-7   | Chlorobenzene               | ND     | 5.7 | 1.1 | ug/kg |       |
| 75-00-3    | Chloroethane                | ND     | 5.7 | 2.3 | ug/kg |       |
| 67-66-3    | Chloroform                  | ND     | 5.7 | 1.4 | ug/kg |       |
| 110-82-7   | Cyclohexane                 | ND     | 5.7 | 1.4 | ug/kg |       |
| 124-48-1   | Dibromochloromethane        | ND     | 5.7 | 1.1 | ug/kg |       |
| 96-12-8    | 1,2-Dibromo-3-chloropropane | ND     | 5.7 | 2.5 | ug/kg |       |
| 106-93-4   | 1,2-Dibromoethane           | ND     | 5.7 | 1.1 | ug/kg |       |
| 75-71-8    | Dichlorodifluoromethane     | ND     | 5.7 | 2.8 | ug/kg |       |
| 95-50-1    | 1,2-Dichlorobenzene         | ND     | 5.7 | 101 | ug/kg |       |
| 541-73-1   | 1,3-Dichlorobenzene         | ND     | 5.7 | 1.1 | ug/kg |       |
| 106-46-7   | 1,4-Dichlorobenzene         | ND     | 5.7 | 1.2 | ug/kg |       |
| 75-34-3    | 1,1-Dichloroethane          | ND     | 5.7 | 1.9 | ug/kg |       |
| 107-06-2   | 1,2-Dichloroethane          | ND     | 5.7 | 1:1 | ug/kg |       |
| 75-35-4    | 1,1-Dichloroethylene        | ND     | 5.7 | 1.1 | ug/kg |       |
| 156-59-2   | cis-1,2-Dichloroethylene    | ND     | 5.7 | 1.4 | ug/kg | 1     |
| 156-60-5   | trans-1,2-Dichloroethylene  | ND     | 5.7 | 1.7 | ug/kg | 1 = 3 |
| 78-87-5    | 1,2-Dichloropropane         | ND     | 5.7 | 1.8 | ug/kg | 137   |
| 10061-01-5 | cis-1,3-Dichloropropene     | ND     | 5.7 | 2.2 | ug/kg |       |
| 10061-02-6 | trans-1,3-Dichloropropene   | ND     | 5.7 | 1.1 | ug/kg | 100   |
| 100-41-4   | Ethylbenzene                | 5.9    | 5.7 | 1.2 | ug/kg | 1     |
| 76-13-1    | Freon 113                   | ND     | 5.7 | 1.3 | ug/kg |       |
| 591-78-6   | 2-Hexanone                  | ND     | 29  | 10  | ug/kg |       |
| 98-82-8    | Isopropylbenzene            | 1.7    | 5.7 | 1.6 | ug/kg | J     |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Project:

### in A

### Report of Analysis

Client Sample ID: MW19 (1-2) Lab Sample ID: FA34192-5

Matrix: SO - Soil Method: SW846 82

SW846 8260C SW846 5035

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 05/23/16 Date Received: 05/24/16

Percent Solids: 86.6

### VOA TCL List (SOM02.0)

| CAS No.   | Compound                    | Result | RL MDL Units |      | Units | Q |
|-----------|-----------------------------|--------|--------------|------|-------|---|
| 99-87-6   | p-Isopropyltoluene          | ND     | 5.7          | 1.1  | ug/kg |   |
| 79-20-9   | Methyl Acetate              | ND     | 29           | 9.8  | ug/kg |   |
| 74-83-9   | Methyl Bromide              | ND     | 5.7          | 2.9  | ug/kg |   |
| 74-87-3   | Methyl Chloride             | ND     | 5.7          | 2.7  | ug/kg |   |
| 108-87-2  | Methylcyclohexane           | ND     | 5.7          | 1.1  | ug/kg |   |
| 75-09-2   | Methylene Chloride          | 5.5    | 11           | 4.6  | ug/kg | J |
| 108-10-1  | 4-Methyl-2-pentanone (MIBK) | ND     | 29           | 12   | ug/kg |   |
| 1634-04-4 | Methyl Tert Butyl Ether     | ND     | 5.7          | 1.3  | ug/kg |   |
| 100-42-5  | Styrene                     | ND     | 5.7          | 1.1  | ug/kg |   |
| 75-85-4   | Tert-Amyl Alcohol           | ND     | 57           | 15   | ug/kg |   |
| 75-65-0   | Tert-Butyl Alcohol          | ND     | 57           | 16   | ug/kg |   |
| 79-34-5   | 1,1,2,2-Tetrachloroethane   | ND     | 5.7          | 2.5  | ug/kg |   |
| 127-18-4  | Tetrachloroethylene         | ND     | 5.7          | 1.5  | ug/kg |   |
| 109-99-9  | Tetrahydrofuran             | ND     | 11           | 4.1  | ug/kg |   |
| 108-88-3  | Toluene                     | ND     | 5.7          | 1.3  | ug/kg |   |
| 87-61-6   | 1,2,3-Trichlorobenzene      | ND     | 5.7          | 2.3  | ug/kg |   |
| 120-82-1  | 1,2,4-Trichlorobenzene      | ND     | 5.7          | 1.7  | ug/kg |   |
| 71-55-6   | 1,1,1-Trichloroethane       | ND     | 5.7          | 1.1  | ug/kg |   |
| 79-00-5   | 1,1,2-Trichloroethane       | ND     | 5.7          | 2.1  | ug/kg |   |
| 79-01-6   | Trichloroethylene           | ND     | 5.7          | 1.3  | ug/kg |   |
| 75-69-4   | Trichlorofluoromethane      | ND     | 5.7          | 2.1  | ug/kg |   |
| 95-63-6   | 1,2,4-Trimethylbenzene      | ND     | 5.7          | 1.1  | ug/kg |   |
| 75-01-4   | Vinyl Chloride              | ND     | 5.7          | 1.9  | ug/kg |   |
|           | m,p-Xylene                  | 6.4    | 11           | 2.0  | ug/kg | J |
| 95-47-6   | o-Xylene                    | ND     | 5.7          | 1.3  | ug/kg |   |
| CAS No.   | Surrogate Recoveries        | Run#1  | Run# 2       | Limi | its   |   |
| 1868-53-7 | Dibromofluoromethane        | 105%   | 75-124%      |      |       |   |

112%

92%

101%



ND = Not detected

2037-26-5

460-00-4

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

17060-07-0 1,2-Dichloroethane-D4

Toluene-D8

4-Bromofluorobenzene

J = Indicates an estimated value

72-135%

75-126%

71-133%

B = Indicates analyte found in associated method blank

### **SGS** Accutest

### Report of Analysis

Page 1 of 2

Client Sample ID: MW19 (5-6) Lab Sample ID:

FA34192-6

SO - Soil

05/23/16 Date Sampled:

Matrix: Method:

SW846 8260C SW846 5035

Date Received: 05/24/16

Project:

BMSMC, Building 5 Area, Humacao, PR

Percent Solids: 85.9

| _      |          |    |          |    |                |            |                  |
|--------|----------|----|----------|----|----------------|------------|------------------|
|        | File ID  | DF | Analyzed | By | Prep Date      | Prep Batch | Analytical Batch |
| Run #1 | Y28866.D | 1  | 05/26/16 | EP | 05/24/16 15:07 | n/a        | VY1166           |
| Run #2 | Y28872.D | 10 | 05/26/16 | EP | 05/24/16 15:07 | n/a        | VY1166           |

|        | Initial Weight | Final Volume | Methanol Aliquot |
|--------|----------------|--------------|------------------|
| Run #1 | 5.97 g         | 5.0 ml       | 10.0 ul          |
| Run #2 | 5.97 g         | 5.0 ml       | 5.0 ul           |

### VOA TCL List (SOM02.0)

| CAS No.         | Compound                    | Result    | RL    | MDL   | Units | Q   |
|-----------------|-----------------------------|-----------|-------|-------|-------|-----|
| 67-64-1         | Acetone                     | ND        | 28000 | 5800  | ug/kg |     |
| 71-43-2         | Benzene                     | ND        | 2800  | 720   | ug/kg |     |
| 100-44-7        | Benzyl Chloride             | ND        | 2800  | 790   | ug/kg |     |
| 74-97-5         | Bromochloromethane          | ND        | 2800  | 630   | ug/kg |     |
| 75-27-4         | Bromodichloromethane        | ND        | 2800  | 570   | ug/kg |     |
| 75-25-2         | Bromoform                   | ND        | 2800  | 570   | ug/kg |     |
| 78-93-3         | 2-Butanone (MEK)            | ND        | 14000 | 5200  | ug/kg |     |
| 75-15-0         | Carbon Disulfide            | ND        | 2800  | 570   | ug/kg |     |
| 56-23-5         | Carbon Tetrachloride        | ND        | 2800  | 1000  | ug/kg |     |
| 108-90-7        | Chlorobenzene               | ND        | 2800  | 570   | ug/kg |     |
| 75-0D-3         | Chloroethane                | ND        | 2800  | 1100  | ug/kg |     |
| 67-66-3         | Chloroform                  | ND        | 2800  | 690   | ug/kg |     |
| 110-82-7        | Cyclohexane                 | ND        | 2800  | 690   | ug/kg |     |
| 124-48-1        | Dibromochloromethane        | ND        | 2800  | 570   | ug/kg |     |
| 96-12-8         | 1,2-Dibromo-3-chloropropane | ND        | 2800  | 1300  | ug/kg |     |
| 106-93-4        | 1,2-Dibromoethane           | ND        | 2800  | 570   | ug/kg |     |
| 75-71-8         | Dichlorodifluoromethane     | ND        | 2800  | 1400  | ug/kg |     |
| <b>95-50-</b> 1 | 1,2-Dichlorobenzene         | ND        | 2800  | 570   | ug/kg |     |
| 541-73-1        | 1,3-Dichlorobenzene         | ND        | 2800  | 570   | ug/kg |     |
| 106-46-7        | 1,4-Dichlorobenzene         | ND        | 2800  | 580   | ug/kg |     |
| 75-34-3         | 1,1-Dichloroethane          | ND        | 2800  | 960   | ug/kg |     |
| 107-06-2        | 1,2-Dichloroethane          | ND        | 2800  | 570   | ug/kg |     |
| 75-35-4         | 1,1-Dichloroethylene        | ND        | 2800  | 570   | ug/kg |     |
| 156-59-2        | cis-1,2-Dichloroethylene    | ND        | 2800  | 680   | ug/kg |     |
| 156-60-5        | trans-1,2-Dichloroethylene  | ND        | 2800  | 870   | ug/kg |     |
| 78-87-5         | 1,2-Dichloropropane         | ND        | 2800  | 910   | ug/kg | /   |
| 10061-01-5      | cis-1,3-Dichloropropene     | ND        | 2800  | 1100  | ug/kg | - 1 |
| 10061-02-6      | trans-1,3-Dichloropropene   | ND        | 2800  | 570   | ug/kg | - [ |
| 100-41-4        | Ethylbenzene                | 1590000 a | 57000 | 12000 | ug/kg | _ \ |
| 76-13-1         | Freon 113                   | ND        | 2800  | 670   | ug/kg | ,   |
| 591-78-6        | 2-Hexanone                  | ND        | 14000 | 5000  | ug/kg |     |
| 98-82-8         | Isopropylbenzene            | 4120      | 2800  | 800   | ug/kg |     |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

**E** = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

### 4.0

### Report of Analysis

Client Sample ID: MW19 (5-6) Lab Sample ID: FA34192-6

SO - Soil

Date Sampled: Date Received:

05/23/16 05/24/16

Matrix: Method:

SW846 8260C SW846 5035

Percent Solids:

Q

J

85.9

Project:

BMSMC, Building 5 Area, Humacao, PR

VOA TCL List (SOM02.0)

| 10111021       | DIM (DOINGE. 0)             |           |        |       |       |
|----------------|-----------------------------|-----------|--------|-------|-------|
| CAS No.        | Compound                    | Result    | RL     | MDL   | Units |
| 99-87-6        | p-Isopropyltoluene          | ND        | 2800   | 570   | ug/kg |
| 79-20-9        | Methyl Acetate              | ND        | 14000  | 4900  | ug/kg |
| 74-83-9        | Methyl Bromide              | ND        | 2800   | 1500  | ug/kg |
| 74-87-3        | Methyl Chloride             | ND        | 2800   | 1400  | ug/kg |
| 108-87-2       | Methylcyclohexane           | 618       | 2800   | 570   | ug/kg |
| 75-09-2        | Methylene Chloride          | 4390      | 5700   | 2300  | ug/kg |
| 108-10-1       | 4-Methyl-2-pentanone (MIBK) | ND        | 14000  | 6100  | ug/kg |
| 1634-04-4      | Methyl Tert Butyl Ether     | ND        | 2800   | 630   | ug/kg |
| 100-42-5       | Styrene                     | ND        | 2800   | 570   | ug/kg |
| 75-85-4        | Tert-Amyl Alcohol           | ND        | 28000  | 7700  | ug/kg |
| <b>75-65-0</b> | Tert-Butyl Alcohol          | ND        | 28000  | 7700  | ug/kg |
| 79-34-5        | 1,1,2,2-Tetrachloroethane   | ND        | 2800   | 1300  | ug/kg |
| 127-18-4       | Tetrachloroethylene         | ND        | 2800   | 750   | ug/kg |
| 109-99-9       | Tetrahydrofuran             | ND        | 5700   | 2100  | ug/kg |
| 108-88-3       | Toluene                     | ND        | 2800   | 640   | ug/kg |
| 87-61-6        | 1,2,3-Trichlorobenzene      | ND        | 2800   | 1100  | ug/kg |
| 120-82-1       | 1,2,4-Trichlorobenzene      | ND        | 2800   | 840   | ug/kg |
| 71-55-6        | 1,1,1-Trichloroethane       | ND        | 2800   | 570   | ug/kg |
| 79-00-5        | 1,1,2-Trichloroethane       | ND        | 2800   | 1000  | ug/kg |
| 79-01-6        | Trichloroethylene           | ND        | 2800   | 670   | ug/kg |
| 75-69-4        | Trichlorofluoromethane      | ND        | 2800   | 1100  | ug/kg |
| 95-63-6        | 1,2,4-Trimethylbenzene      | 4610      | 2800   | 570   | ug/kg |
| 75-01-4        | Vinyl Chloride              | ND        | 2800   | 950   | ug/kg |
|                | m,p-Xylene                  | 4170000 a | 110000 | 20000 | ug/kg |
| 95-47-6        | o-Xylene                    | 351000 *  | 57000  | 13000 | ug/kg |
| CAS No.        | Surrogate Recoveries        | Run#1     | Run# 2 | Lim   | its   |
| 1868-53-7      | Dibromofluoromethane        | 106%      | 105%   | 75-1  | 24%   |
| 17060-07-0     | 1,2-Dichloroethane-D4       | 111%      | 111%   | 72-1  | 35%   |
| 2037-26-5      | Toluene-D8                  | 94%       | 101%   | 75-1  | 26% / |

(a) Result is from Run# 2

460-00-4



ND = Not detected

MDL = Method Detection Limit

106%

107%

RL = Reporting Limit

E = Indicates value exceeds calibration range

4-Bromofluorobenzene

J = Indicates an estimated value

71-133%

B = Indicates analyte found in associated method blank

### Report of Analysis

Page 1 of 2

Client Sample ID: Lab Sample ID:

TB052316

FA34192-7 AQ - Trip Blank Water

Date Sampled: Date Received:

Q

05/13/16

Matrix: Method:

SW846 8260C

05/24/16

Percent Solids:

Project:

BMSMC, Building 5 Area, Humacao, PR

05/25/16

**Analytical Batch** Prep Batch

Run #2

Run #1

DF 1

Analyzed By DP Prep Date n/a

n/a

VJ5314

Run #1

Run #2

Purge Volume

J0976790.D

File ID

5.0 ml

VOA TCL List (SOM02.0)

| CAS No.    | Compound                    | Result | RL  | MDL  | Units  |
|------------|-----------------------------|--------|-----|------|--------|
| 67-64-1    | Acetone                     | ND     | 25  | 10   | ug/l   |
| 71-43-2    | Benzene                     | ND     | 1.0 | 0.20 | ug/l = |
| 100-44-7   | Benzyl Chloride             | ND     | 2.0 | 0.44 | ug/l   |
| 74-97-5    | Bromochloromethane          | ND     | 1.0 | 0.42 | ug/l   |
| 75-27-4    | Bromodichloromethane        | ND     | 1.0 | 0.24 | ug/l   |
| 75-25-2    | Bromoform                   | ND     | 1.0 | 0.46 | ug/l   |
| 78-93-3    | 2-Butanone (MEK)            | ND     | 5.0 | 2.6  | ug/l   |
| 75-15-0    | Carbon Disulfide            | ND     | 2.0 | 0.23 | ug/l   |
| 56-23-5    | Carbon Tetrachloride        | ND     | 1.0 | 0.30 | ug/l   |
| 108-90-7   | Chlorobenzene               | ND     | 1.0 | 0.20 | ug/l   |
| 75-00-3    | Chloroethane                | ND     | 2.0 | 0.63 | ug/l   |
| 67-66-3    | Chloroform                  | ND     | 1.0 | 0.30 | ug/l   |
| 110-82-7   | Cyclohexane                 | ND     | 1.0 | 0.26 | ug/l   |
| 124-48-1   | Dibromochloromethane        | ND     | 1.0 | 0.26 | ug/l   |
| 96-12-8    | 1,2-Dibromo-3-chloropropane | ND     | 5.0 | 0.81 | ug/l   |
| 106-93-4   | 1,2-Dibromoethane           | ND     | 2.0 | 0.33 | ug/l   |
| 75-71-8    | Dichlorodifluoromethane *   | ND     | 2.0 | 0.50 | ug/l   |
| 95-50-1    | 1,2-Dichlorobenzene         | ND     | 1.0 | 0.27 | ug/l   |
| 541-73-1   | 1,3-Dichlorobenzene         | ND     | 1.0 | 0.24 | ug/i   |
| 106-46-7   | 1,4-Dichlorobenzene         | ND     | 1.0 | 0.39 | ug/l   |
| 75-34-3    | 1,1-Dichloroethane          | ND     | 1.0 | 0.26 | ug/l   |
| 107-06-2   | 1,2-Dichloroethane          | ND     | 1.0 | 0.28 | ug/l   |
| 75-35-4    | 1,1-Dichloroethylene        | ND     | 1.0 | 0.22 | ug/l   |
| 156-59-2   | cis-1,2-Dichloroethylene    | ND     | 1.0 | 0.31 | ug/l   |
| 156-60-5   | trans-1,2-Dichloroethylene  | ND     | 1.0 | 0.33 | ug/l   |
| 78-87-5    | 1,2-Dichloropropane         | ND     | 1.0 | 0.34 | ug/l   |
| 10061-01-5 | cis-1,3-Dichloropropene     | ND     | 1.0 | 0.26 | ug/l   |
| 10061-02-6 | trans-1,3-Dichloropropene   | ND     | 1.0 | 0.25 | ug/l   |
| 100-41-4   | Ethylbenzene                | ND     | 1.0 | 0.25 | ug/l   |
| 76-13-1    | Freon 113                   | ND     | 1.0 | 0.32 | ug/l   |
| 591-78-6   | 2-Hexanone                  | ND     | 10  | 2.0  | ug/l   |
| 98-82-8    | Isopropylbenzene            | ND     | 1.0 | 0.33 | ug/l   |

fact Infact Mendez

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

**E** = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

20 of 351

**ACCUTEST** 

### .7

### Report of Analysis

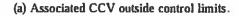
Client Sample ID: TB052316 Lab Sample ID: FA34192-7

Matrix: AQ - Trip Blank Water

Method: SV Project: Bl

AQ - Trip Blank Water SW846 8260C

BMSMC, Building 5 Area, Humacao, PR


Date Sampled: 05/13/16 Date Received: 05/24/16

Q

Date Received: 05/24/16 Percent Solids: n/a

### VOA TCL List (SOM02.0)

| CAS No.    | Compound                    | Result | RL     | MDL  | Units |  |
|------------|-----------------------------|--------|--------|------|-------|--|
| 99-87-6    | p-Isopropyltoluene          | ND     | 1.0    | 0.28 | ug/l  |  |
| 79-20-9    | Methyl Acetate              | ND     | 20     | 5.0  | ug/l  |  |
| 74-83-9    | Methyl Bromide              | ND     | 2.0    | 0.50 | ug/l  |  |
| 74-87-3    | Methyl Chloride             | ND     | 2.0    | 0.50 | ug/l  |  |
| 108-87-2   | Methylcyclohexane           | ND     | 1.0    | 0.23 | ug/l  |  |
| 75-09-2    | Methylene Chloride          | ND     | 5.0    | 2.0  | ug/l  |  |
| 108-10-1   | 4-Methyl-2-pentanone (MIBK) | ND     | 5.0    | 1.4  | ug/l  |  |
| 1634-04-4  | Methyl Tert Butyl Ether     | ND     | 1.0    | 0.20 | ug/l  |  |
| 100-42-5   | Styrene                     | ND     | 1.0    | 0.24 | ug/l  |  |
| 75-85-4    | Tert-Amyl Alcohol           | ND     | 20     | 6.0  | ug/l  |  |
| 75-65-0    | Tert-Butyl Alcohol          | ND     | 20     | 9.1  | ug/l  |  |
| 79-34-5    | 1,1,2,2-Tetrachloroethane   | ND     | 1.0    | 0.33 | ug/l  |  |
| 127-18-4   | Tetrachloroethylene         | ND     | 1.0    | 0.30 | ug/l  |  |
| 109-99-9   | Tetrahydrofuran             | ND     | 5.0    | 1.4  | ug/l  |  |
| 108-88-3   | Toluene                     | ND     | 1.0    | 0.20 | ug/l  |  |
| 87-61-6    | 1,2,3-Trichlorobenzene      | ND     | 2.0    | 0.51 | ug/l  |  |
| 120-82-1   | 1,2,4-Trichlorobenzene      | ND     | 2.0    | 0.50 | ug/l  |  |
| 71-55-6    | 1,1,1-Trichloroethane       | ND     | 1.0    | 0.20 | ug/l  |  |
| 79-00-5    | 1,1,2-Trichloroethane       | ND     | 1.0    | 0.37 | ug/l  |  |
| 79-01-6    | Trichloroethylene           | ND     | 1.0    | 0.27 | ug/l  |  |
| 75-69-4    | Trichlorofluoromethane a    | ND     | 2.0    | 0.50 | ug/l  |  |
| 95-63-6    | 1,2,4-Trimethylbenzene      | ND     | 1.0    | 0.20 | ug/l  |  |
| 75-01-4    | Vinyl Chloride              | ND     | 1.0    | 0.31 | ug/l  |  |
|            | m,p-Xylene                  | ND     | 2.0    | 0.30 | ug/l  |  |
| 95-47-6    | o-Xylene                    | ND     | 1.0    | 0.26 | ug/l  |  |
| CAS No.    | Surrogate Recoveries        | Run# 1 | Run# 2 | Lim  | its   |  |
| 1868-53-7  | Dibromofluoromethane        | 101%   |        | 83-1 | 18%   |  |
| 17060-07-0 | 1,2-Dichloroethane-D4       | 103%   |        | 79-1 | 25%   |  |
| 2037-26-5  | Toluene-D8                  | 102%   |        | 85-1 | 12%   |  |
| 460-00-4   | 4-Bromofluorobenzene        | 103%   |        | 83-1 | 18%   |  |





ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

| SGS ACCU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TEST -      | -PL                    | CHAI        | N C    | F C                                        | CUST                       | го:<br>н.4  | DY<br>405    | V4           | ela<br>L      | لهد                                  | 80826               | 39      | 1901              | 2       | 2-40-1<br>200 g | har Lan    |                 |            | OF                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------|-------------|--------|--------------------------------------------|----------------------------|-------------|--------------|--------------|---------------|--------------------------------------|---------------------|---------|-------------------|---------|-----------------|------------|-----------------|------------|-----------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                        | 77307154    |        |                                            |                            |             |              |              |               |                                      | WE S                | gmesse: | Pilety            | TE SIN  |                 |            |                 | 200        | Matrix Codes                                                                                  |
| Anderson Mulhalland Associac<br>2700 West-Lester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B           | US Re                  | lease       | Ag     | 569,                                       | The                        | 4           |              | NAVE         | No.74         | Mich                                 | 260C                |         |                   |         |                 |            |                 |            | DW - Exending Water<br>GW - Greand Water<br>WW - Water<br>SW - Burlam Water<br>SO - Bull      |
| Purchase NY "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HUM         | na Cao                 | PR          | Carpu  | g filming                                  |                            |             |              |              |               |                                      | 00                  |         |                   |         |                 |            |                 |            | SL-Shidge<br>SED-Sedment                                                                      |
| Terry Taylor 914-251-0400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Presci P    |                        |             | Gay    | diverse .                                  |                            | 8           | tate         |              | Δ             | _                                    | Method              |         |                   |         |                 |            |                 |            | OI - CB<br>LIG - Devr Liquid<br>ASI - Air<br>SCL - Clear Sold<br>WP - Wyee<br>FB-Fluid Starts |
| T-Taylor, R-Stocart D-Lindston                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7           |                        | Column      | *****  | ĸ                                          |                            |             |              |              | - 15          |                                      | l ĭl                |         |                   |         |                 |            |                 |            | ES-Employment (Barch<br>RS-Firms (Bank<br>TS-Titp Blank                                       |
| man Field ID / Point of Collection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MECHOI VM # | Dane                   | Toma        | 24     | Main                                       | e el comu                  | 2 3         | 10           | T O          | MED N         | Pecove                               | 700                 |         |                   |         |                 |            |                 |            | LAB USE ONLY                                                                                  |
| 1 SB-104-GWD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | OSTUM                  | 1430        | 11     | GW/                                        | 3                          | 3           | П            |              |               | П                                    | X                   |         |                   | $\perp$ |                 |            |                 |            |                                                                                               |
| 2 RPEB - 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | 05/20/16               | 1625        | 11     | EB                                         | 3                          | 3           | $\mathbf{H}$ | $\sqcup$     | 4             | #                                    | X                   | $\perp$ |                   | 4       | 1               | $\sqcup$   |                 | _          |                                                                                               |
| 3 RA4-GWD<br>1 5R 04-GWS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | 05/13/4                | 1105        |        | GW                                         | 3                          | 3           | ++           | $\mathbb{H}$ | +             | ₩                                    | X                   | -       | $\vdash \vdash$   | +       | +-              |            | $\vdash \vdash$ | +          |                                                                                               |
| C MW19 (1-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | 102/25/16<br>100/20/10 | 1200        |        | So.                                        | 3                          | 1           | ╁┼           | ₩            | +             | 3                                    | <del> 춫 </del> -    | +-      |                   | -       |                 | $\vdash$   | $\vdash$        | -          |                                                                                               |
| 6 MW(9 75-6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | 05/23/14               | 12.05       | 1      | 50                                         | 7                          | H           | ╁┼           | #            | +             | 뉨                                    | X                   | +       | $\vdash$          | +       | +               |            |                 | +          | <del>                                     </del>                                              |
| 7 18052316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | 95/13/16               |             |        | TA                                         | 2                          | 2           | $\parallel$  | Ϊ            | $\pm$         | Ĭ                                    |                     |         | $\Box$            |         | $\pm$           |            |                 |            |                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                        |             |        |                                            |                            | H           | H            | $\prod$      |               | H                                    |                     |         |                   | -       |                 |            |                 | -          |                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                        |             |        |                                            |                            | П           | H            | П            | 1             | П                                    |                     |         |                   | _       | $\perp$         |            |                 | ゴ          |                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                        |             |        |                                            |                            | ${}$        | H            | ╫            | +             | +                                    | +                   | 1       | $\dashv$          | +       | +               | $\vdash$   | $\vdash$        | . 5        |                                                                                               |
| Turnerquiré Titre ( Brownes depa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                        |             | M.2013 |                                            | Oute                       |             |              |              | elon .        | 1_1_                                 |                     | 100000  |                   |         |                 |            |                 |            | 200 AM (27 C) 10 AM                                                                           |
| Mail 19 Dominous Days Far Sal Sarple   & Day RUSH   1 Day RUSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3           | Annana (14); / Bans    |             |        | Campair<br>Gament<br>PURLETT (<br>NJ Rodan | 4pt "8" ( L<br>( Lawel 3+t | evel 2      |              |              | HYA!<br>State | SP Cate<br>SP Cate<br>Forms<br>Forms |                     | A       | 4 to              | Rope    | rti 1           | etr<br>tal | whye            | drof<br>e, | Pros.                                                                                         |
| 1 Day Russel Fac a quest Sary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | آوي         |                        |             | 吕      |                                            | ed Finance<br>Romats Or    |             |              |              |               |                                      | Normal's            | 11-7    | 2-7               | Tri     | ma              | yl (       | SCI II          | AC,        | Sen Zyl                                                                                       |
| Secure percey & Parely TAX Green products VAA Landers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -           | and Control            | سروف بدا اس |        | cod - Ro                                   | oulis + OC                 | Summ        | ury + Pr     | mini Pa      | per eligib    |                                      | heling court        | Same    | ale inve          | nory is | verified        | Upon       | TECHIDA         | in the     | Laboratory                                                                                    |
| . Nath 1860 35/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3/16/2      |                        |             | X      |                                            |                            | 7m/mag<br>2 | andred 1     | -            |               |                                      |                     |         | y.<br>Cama Thanas |         | 2 (             | 12.        | 1/2             | 5          | 14/16 1330                                                                                    |
| Total Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | Samuel Syr             |             |        |                                            |                            | 4           |              |              |               |                                      |                     |         | Carlo Pinne       |         | 4               | de ,       |                 |            |                                                                                               |
| Sum The Control of th |             | 5                      |             |        |                                            |                            |             | dy band P    | 36           | EL            | 0                                    | Paint<br>Pail bland | Preserv | 0                 | -       |                 |            | K               |            | 3.4                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10          |                        |             |        |                                            |                            |             |              |              | 200           |                                      | =N-A                |         |                   |         |                 |            |                 |            |                                                                                               |

FA34192: Chain of Custody Page 1 of 3

### **EXECUTIVE NARRATIVE**

SDG No:

FA34192

Laboratory:

Accutest, Florida

Analysis:

SW846-8260C

Number of Samples:

Location:

BMSMC - Building 5 Area

Humacao, PR

SUMMARY:

Seven (7) samples were analyzed for volatile organic compounds (VOCs) by method SW846-8260C. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: USEPA Hazardous Waste Support Section SOP No. HW-33A Revision 0 SOM02.2. Low/Medium Volatile Data Validation. July, 2015. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted. Results are valid and can be used for decision making purposes.

Critical issues:

None

Major: Minor:

None

**Critical findings:** 

None

Major findings:

None None

Minor findings:

1. For analytes with ending calibration % difference outside the guidance document validation criteria of  $\pm$  25 % or  $\pm$  50 % difference no qualification was performed. No action

taken, professional judgment.

Analytes with continuing and ending calibration % difference within the guidance document validation criteria of  $\pm$  25 % or  $\pm$  50 % but not meeting the method performance criteria of  $\pm$  20 % were not qualified, professional judgment.

- 2. 1,2,3-trichlorobenzene detected in method blank below reporting limit and not detected in the sample batch. No action taken.
- 3. Results in sample FA34192-5 were qualified: analytes recovered below lower laboratory control limits but within generally acceptable limits are qualified as estimated (J) or (UJ). Analytes recovered above the upper control limits are qualified (J) for positive results, non-detects are accepted.

**COMMENTS:** 

Results are valid and can be used for decision making purposes.

**Reviewers Name:** 

Rafael Infante

Chemist License 1888

Signature:

Date:

June 10, 2016

# SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: FA34192-1

Sample location: BMSMC Building 5 Area

Sampling date: 5/20/2016 Matrix: Groundwater

|                             | 0.000   |           |                          |          |            |            |
|-----------------------------|---------|-----------|--------------------------|----------|------------|------------|
| Analyte Name                | Result  | Units Dil | Dilution Factor Lab Flag | Lab Flag | Validation | Reportable |
| Acetone                     | 25      | ug/L      | 1.0                      | ,        | _          | Yes        |
| Benzene                     | 1.0     | ug/L      | 1.0                      | 1        | <b>C</b>   | Yes        |
| Benzyl Chloride             | 1.0     | ug/L      | 1.0                      | •        | <b>C</b>   | Yes        |
| Bromochloromethane          | 1.0     | ug/L      | 1.0                      | r        | <b>C</b>   | Yes        |
| Bromodichloromethane        | 1.0     | ug/L      | 1.0                      |          | _          | Yes        |
| Bromoform                   | 1.0     | ug/L      | 1.0                      |          | <b>C</b>   | Yes        |
| 2-Butanone (MEK)            | 5.0     | ug/L      | 1.0                      |          | <b>C</b>   | Yes        |
| Carbon disulfide            | 0.42    | ug/L      | 1.0                      | _        | Ξ          | Yes        |
| Carbon tetrachloride        | 1.0     | ug/L      | 1.0                      | ,        | <b>C</b>   | Yes        |
| Chlorobenzene               | 1.0     | ug/L      | 1.0                      | 9        | <b>C</b>   | Yes        |
| Chloroethane                | 2.0     | ug/L      | 1.0                      | 1        | ⊆          | Yes        |
| Chloroform                  | 1.0     | ug/L      | 1.0                      | •        | <b>C</b>   | Yes        |
| Cyclohexane                 | 1.0     | ug/L      | 1.0                      | i e      | <b>C</b>   | Yes        |
| Dibromochloromethane        | 1.0     | ug/L      | 1.0                      | •        | <b>C</b>   | Yes        |
| 1,2-Dibromo-3-chloropropane | 5.0     | ug/L      | 1.0                      | 3        | <b>C</b>   | Yes        |
| 1,2-Dibromoethane           | 2.0     | ug/L      | 1.0                      | •        | _          | Yes        |
| Dichlorodifluoromethane     | 2.0     | ug/L      | 1.0                      |          | ٤          | Yes        |
| 1,2-Dichlorobenzene         | ω<br>.∞ | ug/L      | 1.0                      | 3.F      | á          | Yes        |
| 1,3-Dichlorobenzene         | 1.0     | ug/L      | 1.0                      | ,        | C          | Yes        |
| 1,4-Dichlorobenzene         | 0.87    | ug/L      | 1.0                      | _        | ٤          | Yes        |
| 1,1-Dichloroethane          | 1.0     | ug/L      | 1.0                      | n        | C          | Yes        |
| 1,2-Dichloroethane          | 1.0     | ug/L      | 1.0                      | C        | C          | Yes        |
| 1,1-Dichloroethene          | 1.0     | ug/L      | 1.0                      | ı        | C          | Yes        |
| cis-1,2-Dichloroethene      | 1.0     | ug/L      | 1.0                      | 0.5      | C          | Yes        |

| Tert-Amyl Alcohol Tert-Butyl Alcohol 1,1,2,2-Tetrachloroethane Tetrachloroethene Tetrahydrofuran Toluene 1,2,3-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene Vinyl chloride m,p-Xylene o-Xylene | trans-1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene Freon 113 2-Hexanone Isopropylbenzene p-Isopropyltoluene Methyl Bromide Methyl Chloride Methyl Chloride Methylcyclohexane Methylcyclohexane Methylene chloride 4-Methyl-2-pentanone(MIBK) Methyl Tert Butyl Ether |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20<br>20<br>1.0<br>1.0<br>5.0<br>1.0<br>2.0<br>2.0<br>1.0<br>1.0<br>1.0<br>2.0<br>1.0                                                                                                                                                                                              | 1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>2.0<br>2.0<br>2.0<br>5.0<br>1.0                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                    | ##/\<br>##/\<br>##\\<br>##\\<br>##\\<br>##\\<br>##\\<br>##\\                                                                                                                                                                                                                                                                  |
| 110 110 110 110 110 110 110 110 110 110                                                                                                                                                                                                                                            | 110                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                               |

# Sample ID: FA34192-2

Sample location: BMSMC Building 5 Area Sampling date: 5/20/2016

Matrix: AQ - Equipment Blank

| METHOD: 8260C |                                                                                 |                                        |                                        |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------|---------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Result        | Units Dil                                                                       | ution Factor                           | Lab Flag                               | Validation                                                                                            | Reportable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 25            | ug/L                                                                            | 1.0                                    |                                        | _                                                                                                     | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.0           | ug/L                                                                            | 1.0                                    |                                        | <b>C</b>                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.0           | ug/L                                                                            | 1.0                                    | 1                                      | <b>C</b>                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.0           | ug/L                                                                            | 1.0                                    | ů.                                     | <b>C</b>                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.0           | ug/L                                                                            | 1.0                                    |                                        | <b>C</b>                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.0           | ug/L                                                                            | 1.0                                    | ें।                                    | <b>C</b>                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5.0           | ug/L                                                                            | 1.0                                    | e                                      | <b>C</b>                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2.0           | ug/L                                                                            | 1.0                                    | t                                      | <b>C</b>                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.0           | ug/L                                                                            | 1.0                                    | 1                                      | <b>C</b>                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.0           | ug/L                                                                            | 1.0                                    | ı                                      | _                                                                                                     | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2.0           | ug/L                                                                            | 1.0                                    | ,                                      | _                                                                                                     | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.0           | ug/L                                                                            | 1.0                                    | ı                                      | <b>C</b>                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.0           | ug/L                                                                            | 1.0                                    | •                                      | C                                                                                                     | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.0           | ug/L                                                                            | 1.0                                    |                                        | _                                                                                                     | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5.0           | ug/L                                                                            | 1.0                                    | •                                      | <b>C</b>                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2.0           | ug/L                                                                            | 1.0                                    | ı                                      | <b>C</b>                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2.0           | ug/L                                                                            | 1.0                                    | ,                                      | _                                                                                                     | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.0           | ug/L                                                                            | 1.0                                    | •                                      | _                                                                                                     | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.0           | ug/L                                                                            | 1.0                                    | •                                      | _                                                                                                     | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.0           | ug/L                                                                            | 1.0                                    | 1                                      | _                                                                                                     | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.0           | ug/L                                                                            | 1.0                                    | •                                      | <b>C</b>                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.0           | ug∕L                                                                            | 1.0                                    | •                                      | <b>C</b>                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.0           | ug/L                                                                            | 1.0                                    | 1                                      | _                                                                                                     | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.0           | ug/L                                                                            | 1.0                                    | •                                      | _                                                                                                     | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.0           | ug/L                                                                            | 1.0                                    | •                                      | <b>C</b>                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.0           | ug/L                                                                            | 1.0                                    | ı                                      | C                                                                                                     | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               | Result 25 1.0 1.0 1.0 1.0 1.0 1.0 5.0 5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1 | ##\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | ##\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | ntt Units Dilutio  ng/L  ng/L | ult Units Dilution Factor Lab Flag Validation  1.0  ug/L  0  ug/L  1.0  ug/L |

| m,p-Xylene<br>o-Xylene | Vinyl chloride | 1,2,4-Trimethylbenzene | Trichlorofluoromethane | Trichloroethene | 1,1,2-Trichloroethane | 1,1,1-Trichloroethane | 1,2,4-Trichlorobenzene | 1,2,3-Trichlorobenzene | Toluene  | Tetrahydrofuran | Tetrachloroethene | 1,1,2,2-Tetrachloroethane | Tert-Butyl Alcohol | Tert-Amyl Alcohol | Styrene  | Methyl Tert Butyl Ether | 4-Methyl-2-pentanone(MIBK) | Methylene chloride | Methylcyclohexane | Methyl Chloride | Methyl Bromide | Methyl Acetate | p-isopropyitoluene | Isopropylbenzene | 2-Hexanone | Freon 113 | Ethylbenzene | trans-1,3-Dichloropropene | cis-1,3-Dichloropropene |
|------------------------|----------------|------------------------|------------------------|-----------------|-----------------------|-----------------------|------------------------|------------------------|----------|-----------------|-------------------|---------------------------|--------------------|-------------------|----------|-------------------------|----------------------------|--------------------|-------------------|-----------------|----------------|----------------|--------------------|------------------|------------|-----------|--------------|---------------------------|-------------------------|
| 1.0                    | 1.0            | 1.0                    | 2.0                    | 1.0             | 1.0                   | 1.0                   | 2.0                    | 2.0                    | 1.0      | 5.0             | 1.0               | 1.0                       | 20                 | 20                | 1.0      | 1.0                     | 5.0                        | 5.0                | 1.0               | 2.0             | 2.0            | 20             | 1.0                | 1.0              | 10         | 1.0       | 1.0          | 1.0                       | 1.0                     |
| ng/L                   | ug/L           | ug/L                   | ug/L                   | ug/L            | ug/L                  | ug/L                  | ⊔g/L                   | ug/L                   | ng/L     | ug/L            | ug/L              | ug/L                      | ug/L               | ug∕L              | ug/L     | ug/L                    | ug/L                       | ug/L               | ug/L              | ug/L            | ug/L           | ug/L           | ug/L               | ug/L             | ug/L       | ug/L      | ug∕L         | ug/L                      | ug/L                    |
| 1.0                    | 1.0            | 1.0                    | 1.0                    | 1.0             | 1.0                   | 1.0                   | 1.0                    | 1.0                    | 1.0      | 1.0             | 1.0               | 1.0                       | 1.0                | 1.0               | 1.0      | 1.0                     | 1.0                        | 1.0                | 1.0               | 1.0             | 1.0            | 1.0            | 1.0                | 1.0              | 1.0        | 1.0       | 1.0          | 1.0                       | 1.0                     |
|                        | ×              | 10                     | ,                      |                 | e                     | a                     |                        | 1                      | 37       | i.              | 1                 | 1                         | 10                 |                   |          | ĸ                       | ä                          | ï                  | 1                 | 1               | r              | 1              | ì                  | r                | ā          |           | Ē            | ı,                        | ř                       |
| c c                    | · C            | <b>C</b>               | _                      | _               | _                     | <b>C</b>              | <b>C</b>               | <b>C</b>               | <b>C</b> | <b>C</b>        | <b>C</b>          | <b>C</b>                  | <b>C</b>           | <b>C</b>          | <b>C</b> | <b>C</b>                | <b>C</b>                   | <b>C</b>           | <b>C</b>          | <b>C</b>        | <b>C</b>       | <b>C</b>       | <b>C</b>           | <b>C</b>         | <b>C</b>   | ⊂         | _            | <b>C</b>                  | <b>C</b>                |
| Yes<br>Yes             | Yes            | Yes                    | Yes                    | Yes             | Yes                   | Yes                   | Yes                    | Yes                    | Yes      | Yes             | Yes               | Yes                       | Yes                | Yes               | Yes      | Yes                     | Yes                        | Yes                | Yes               | Yes             | Yes            | Yes            | Yes                | Yes              | Yes        | Yes       | Yes          | Yes                       | Yes                     |

£1

# Sample ID: FA34192-3

Sample location: BMSMC Building 5 Area Sampling date: 5/23/2016

Matrix: Groundwater

|                             | MIETHOD: 97POC | 7007   |      |                 |          |                      |            |
|-----------------------------|----------------|--------|------|-----------------|----------|----------------------|------------|
| Analyte Name                |                | Result | ٠.   | Dilution Factor | Lab Flag | Validation Reportabl | Reportable |
| Acetone                     |                | 25     | ug/L | 1.0             | •        | _                    | Yes        |
| Benzene                     |                | 1.0    | ug/L | 1.0             | 1        | <b>C</b>             | Yes        |
| Benzyl Chloride             |                | 1.0    | ug/L | 1.0             | •        | _                    | Yes        |
| Bromochloromethane          |                | 1.0    | ug/L | 1.0             |          | <b>C</b>             | Yes        |
| Bromodichloromethane        |                | 1.0    | ug/L | 1.0             | ı        | _                    | Yes        |
| Bromoform                   |                | 1.0    | ug/L | 1.0             |          | _                    | Yes        |
| 2-Butanone (MEK)            |                | 5.0    | ug/L | 1.0             | 1        | <b>C</b>             | Yes        |
| Carbon disulfide            |                | 0.33   | ug/L | 1.0             | _        | ⊆                    | Yes        |
| Carbon tetrachloride        |                | 1.0    | ug/L | 1.0             | ı        | <b>C</b>             | Yes        |
| Chlorobenzene               |                | 2.3    | ug/L | 1.0             | ı        | •                    | Yes        |
| Chloroethane                |                | 2.0    | ug/L | 1.0             |          | <b>C</b>             | Yes        |
| Chloroform                  |                | 1.0    | ug/L | 1.0             | 1        | <b>C</b>             | Yes        |
| Cyclohexane                 |                | 1.0    | ug/L | 1.0             | ,        | _                    | Yes        |
| Dibromochloromethane        |                | 1.0    | ug/L | 1.0             |          | <b>C</b>             | Yes        |
| 1,2-Dibromo-3-chloropropane |                | 5.0    | ug/L | 1.0             | 1        | <b>C</b>             | Yes        |
| 1,2-Dibromoethane           |                | 2.0    | ug/L | 1.0             | 1        | <b>C</b>             | Yes        |
| Dichlorodifluoromethane     |                | 2.0    | ug/L | 1.0             | •        | C                    | Yes        |
| 1,2-Dichlorobenzene         |                | 1.2    | ug/L | 1.0             | ŧ        | 1                    | Yes        |
| 1,3-Dichlorobenzene         |                | 1.0    | ug/L | 1.0             | •        | <b>C</b>             | Yes        |
| 1,4-Dichlorobenzene         |                | 0.58   | ug/L | 1.0             | ے        | ⋸                    | Yes        |
| 1,1-Dichloroethane          |                | 1.0    | ug/L | 1.0             | ı        | <b>C</b>             | Yes        |
| 1,2-Dichloroethane          |                | 1.0    | ug/L | 1.0             | э        | <b>C</b>             | Yes        |
| 1,1-Dichloroethene          |                | 1.0    | ug/L | 1.0             | r        | <b>C</b>             | Yes        |
| cis-1,2-Dichloroethene      |                | 1.0    | ug/L | 1.0             | ï        | <b>C</b>             | Yes        |
| trans-1,2-Dichloroethene    |                | 1.0    | ug/L | 1.0             | 1        | C                    | Yes        |
| 1,2-Dichloropropane         |                | 1.0    | ug/L | 1.0             | ı        | C                    | Yes        |

| m,p-Xylene<br>o-Xylene | Vinyl chloride | 1,2,4-Trimethylbenzene | Trichlorofluoromethane | Trichloroethene | 1,1,2-Trichloroethane | 1,1,1-Trichloroethane | 1,2,4-Trichlorobenzene | 1,2,3-Trichlorobenzene | Toluene  | Tetrahydrofuran | Tetrachloroethene | 1,1,2,2-Tetrachloroethane | Tert-Butyl Alcohol | Tert-Amyl Alcohol | Styrene  | Methyl Tert Butyl Ether | 4-Methyl-2-pentanone(MIBK) | Methylene chloride | Methylcyclohexane | Methyl Chloride | Methyl Bromide | Methyl Acetate | p-IsopropyItoluene | Isopropylbenzene | 2-Hexanone | Freon 113 | Ethylbenzene | trans-1,3-Dichloropropene | cis-1,3-Dichloropropene |
|------------------------|----------------|------------------------|------------------------|-----------------|-----------------------|-----------------------|------------------------|------------------------|----------|-----------------|-------------------|---------------------------|--------------------|-------------------|----------|-------------------------|----------------------------|--------------------|-------------------|-----------------|----------------|----------------|--------------------|------------------|------------|-----------|--------------|---------------------------|-------------------------|
| 2.0<br>1.0             | 1.0            | 1.0                    | 2.0                    | 1.0             | 1.0                   | 1.0                   | 2.0                    | 2.0                    | 1.0      | 5.0             | 1.0               | 1.0                       | 20                 | 20                | 1.0      | 1.4                     | 5.0                        | 5.0                | 1.0               | 2.0             | 2.0            | 20             | 1.0                | 0.82             | 10         | 1.0       | 1.0          | 1.0                       | 1.0                     |
| ug/L<br>ug/L           | ug/L           | ug/L                   | ug/L                   | ug/L            | ug/L                  | ug/L                  | ug/L                   | ug/L                   | ug/L     | ug/L            | ug/L              | ug/L                      | ug/L               | ug/L              | ug/L     | ug/L                    | ug/L                       | ug/L               | ug/L              | ug/L            | ug/L           | ug/L           | ug/L               | ug/L             | ug/L       | ug/L      | ug/L         | ug/L                      | ug/L                    |
| 1.0                    | 1.0            | 1.0                    | 1.0                    | 1.0             | 1.0                   | 1.0                   | 1.0                    | 1.0                    | 1.0      | 1.0             | 1.0               | 1.0                       | 1.0                | 1.0               | 1.0      | 1.0                     | 1.0                        | 1.0                | 1.0               | 1.0             | 1.0            | 1.0            | 1.0                | 1.0              | 1.0        | 1.0       | 1.0          | 1.0                       | 1.0                     |
|                        | э              | ,                      |                        | i <sub>t</sub>  |                       | 1                     |                        | ě                      |          | ,               | E?                | 1                         | T.                 | 1                 | 1        | r                       | 1                          | ï                  | É                 | Si .            | ï              | 1              | 1                  | _                | ,          | r         | ř            | Si.                       | T                       |
| c c                    | <b>C</b>       | <b>C</b>               | <b>C</b>               | <b>C</b>        | <b>C</b>              | <b>C</b>              | <b>C</b>               | <b>C</b>               | <b>C</b> | <b>C</b>        | <b>C</b>          | _                         | <b>C</b>           | <b>C</b>          | <b>C</b> | 1                       | <b>C</b>                   | C                  | <b>C</b>          | <b>C</b>        | <b>C</b>       | <b>C</b>       | <b>C</b>           | ٤                | <b>C</b>   | <b>C</b>  | C            | <b>C</b>                  | C                       |
| Yes<br>Yes             | Yes            | Yes                    | Yes                    | Yes             | Yes                   | Yes                   | Yes                    | Yes                    | Yes      | Yes             | Yes               | Yes                       | Yes                | Yes               | Yes      | Yes                     | Yes                        | Yes                | Yes               | Yes             | Yes            | Yes            | Yes                | Yes              | Yes        | Yes       | Yes          | Yes                       | Yes                     |

75

.

Sample ID: FA34192-4

Sample location: BMSMC Building 5 Area Sampling date: 5/23/2016

Matrix: Groundwater

| Analyta Nama                | Pacid+ | linite Dil | Dilution Eactor Tab Class | ב<br>ה<br>ה | Validation | Donortable |
|-----------------------------|--------|------------|---------------------------|-------------|------------|------------|
| Acetone                     | 25     |            | 1.0                       | ' '         | <b>C</b>   |            |
| Benzene                     | 1.0    | ug/L       | 1.0                       | 1           | <b>C</b>   | Yes        |
| Benzyl Chloride             | 1.0    | ug/L       | 1.0                       | 1           | <b>C</b>   | Yes        |
| Bromochloromethane          | 1.0    | ug/L       | 1.0                       | 1           | <b>C</b>   | Yes        |
| Bromodichloromethane        | 1.0    | ug∕L       | 1.0                       | 1           | <b>C</b>   | Yes        |
| Bromoform                   | 1.0    | ug/L       | 1.0                       | 1           | <b>C</b>   | Yes        |
| 2-Butanone (MEK)            | 5.0    | ug/L       | 1.0                       | •           | <b>C</b>   | Yes        |
| Carbon disulfide            | 2.0    | ug/L       | 1.0                       | T.          | <b>C</b>   | Yes        |
| Carbon tetrachioride        | 1.0    | ug/L       | 1.0                       | r           | <b>C</b>   | Yes        |
| Chlorobenzene               | 1.0    | ug/L       | 1.0                       | a           | <b>C</b>   | Yes        |
| Chloroethane                | 2.0    | ug/L       | 1.0                       | •           | <b>C</b>   | Yes        |
| Chloroform                  | 1.0    | ug/L       | 1.0                       | ı           | _          | Yes        |
| Cyclohexane                 | 1.0    | ug/L       | 1.0                       |             | _          | Yes        |
| Dibromochloromethane        | 1.0    | ug/L       | 1.0                       | ić.         | <b>C</b>   | Yes        |
| 1,2-Dibromo-3-chloropropane | 5.0    | ug/L       | 1.0                       | •           | <b>C</b>   | Yes        |
| 1,2-Dibromoethane           | 2.0    | ug/L       | 1.0                       | i.          | <b>C</b>   | Yes        |
| Dichlorodifluoromethane     | 2.0    | ug/L       | 1.0                       | r           | <b>C</b>   | Yes        |
| 1,2-Dichlorobenzene         | 1.0    | ug/L       | 1.0                       | a           | <b>C</b>   | Yes        |
| 1,3-Dichlorobenzene         | 1.0    | ug/L       | 1.0                       | c           | ٥          | Yes        |
| 1,4-Dichlorobenzene         | 1.0    | ug/L       | 1.0                       | ı           | _          | Yes        |
| 1,1-Dichloroethane          | 1.0    | ug/L       | 1.0                       | 1           | <b>C</b>   | Yes        |
| 1,2-Dichloroethane          | 1.0    | ug/L       | 1.0                       | 1           | <b>C</b>   | Yes        |
| 1,1-Dichloroethene          | 1.0    | اg/ل       | 1.0                       | ı           | _          | Yes        |
| cis-1,2-Dichloroethene      | 1.0    | ug/L       | 1.0                       | şı          | <b>C</b>   | Yes        |
| trans-1,2-Dichloroethene    | 1.0    | ug/L       | 1.0                       | e           | C          | Yes        |
|                             |        |            |                           |             |            |            |

| p-Isopropylbenzene p-Isopropyltoluene Methyl Acetate Methyl Bromide Methyl Chloride Methylcyclohexane Methylcyclohexane Methyl-2-pentanone(MIBK) Methyl Tert Butyl Ether Styrene Tert-Amyl Alcohol Tert-Butyl Alcohol Tert-Butyl Alcohol 1,1,2,2-Tetrachloroethane Tetrahydrofuran Toluene 1,2,3-Trichlorobenzene 1,2,4-Trichloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,2,4-Trimethylbenzene Vinyl chloride m,p-Xylene o-Xylene | 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene Freon 113 2-Hexanone |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| 1.0<br>2.0<br>2.0<br>1.0<br>5.0<br>1.0<br>20<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>2.0<br>1.0<br>1.0<br>1.0<br>2.0<br>1.0<br>1.0<br>2.0<br>1.0                                                                                                                                                                                                                                                                                                                                                           | 1.0<br>1.0<br>1.0<br>1.0                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ##/L<br>##/L<br>##/L<br>##/L                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes<br>Yes<br>Yes                                                                                       |

# Sample ID: FA34192-5 Sample location: BMSMC Building 5 Area Sampling date: 5/23/2016 Matrix: Soil

| 1,2-Dichloropropane | trans-1,2-Dichloroethene | cis-1,2-Dichloroethene | 1,1-Dichloroethene | 1,2-Dichloroethane | 1,1-Dichloroethane | 1,4-Dichlorobenzene | 1,3-Dichlorobenzene | 1,2-Dichlorobenzene | Dichlorodifluoromethane | 1,2-Dibromoethane | 1,2-Dibromo-3-chloropropane | Dibromochloromethane | Cyclohexane | Chloroform | Chloroethane | Chlorobenzene | Carbon tetrachloride | Carbon disulfide | 2-Butanone (MEK) | Bromoform | Bromodichloromethane | Bromochloromethane | Benzyl Chloride | Benzene | Acetone | Analyte Name Res               |
|---------------------|--------------------------|------------------------|--------------------|--------------------|--------------------|---------------------|---------------------|---------------------|-------------------------|-------------------|-----------------------------|----------------------|-------------|------------|--------------|---------------|----------------------|------------------|------------------|-----------|----------------------|--------------------|-----------------|---------|---------|--------------------------------|
| 5.7                 | 5.7                      | 5.7                    | 5.7                | 5.7                | 5.7                | 5.7                 | 5.7                 | 5.7                 | 5.7                     | 5.7               | 5.7                         | 5.7                  | 5.7         | 5.7        | 5.7          | 5.7           | 5.7                  | 5.7              | 29               | 5.7       | 5.7                  | 5.7                | 5.7             | 5.7     | 105     | Result                         |
| ug/kg               | ug/kg                    | ug/kg                  | ug/kg              | ug/kg              | ug/kg              | ug/kg               | ug/kg               | ug/kg               | ug/kg                   | ug/kg             | ug/kg                       | ug/kg                | ug/kg       | ug/kg      | ug/kg        | ug/kg         | ug/kg                | ug/kg            | ug/kg            | ug/kg     | ug/kg                | ug/kg              | ug/kg           | ug/kg   | ug/kg   | Units Dil                      |
| 1.0                 | 1.0                      | 1.0                    | 1.0                | 1.0                | 1.0                | 1.0                 | 1.0                 | 1.0                 | 1.0                     | 1.0               | 1.0                         | 1.0                  | 1.0         | 1.0        | 1.0          | 1.0           | 1.0                  | 1.0              | 1.0              | 1.0       | 1.0                  | 1.0                | 1.0             | 1.0     | 1.0     | Units Dilution Factor Lab Flag |
| ,                   | •                        | Ε                      | ı                  | •                  | •                  | •                   |                     | •                   | r                       | •                 | •                           | 1                    | 1           | ı          | •            | •             | 1                    | •                | ı                | 1         | •                    | •                  |                 | •       | 1       | Lab Flag                       |
| C                   | _                        | <b>C</b>               | <b>C</b>           | <b>C</b>           | <b>C</b>           | _                   | <b>C</b>            | <b>C</b>            | ⊆                       | <b>C</b>          | <b>C</b>                    | <b>C</b>             | ٤           | <b>C</b>   | C            | <b>C</b>      | <b>C</b>             | <b>C</b>         | <b>C</b>         | _         | C                    | <b>C</b>           | <b>C</b>        | C       | ,       | Validation                     |
| Yes                 | Yes                      | Yes                    | Yes                | Yes                | Yes                | Yes                 | Yes                 | Yes                 | Yes                     | Yes               | Yes                         | Yes                  | Yes         | Yes        | Yes          | Yes           | Yes                  | Yes              | Yes              | Yes       | Yes                  | Yes                | Yes             | Yes     | Yes     | Validation Reportable          |

| m,p-Xylene<br>o-Xylene | Vinyl chloride | 1,2,4-Trimethylbenzene | Trichlorofluoromethane | [richloroethene | L,1,2-Trichloroethane | L,1,1-Trichloroethane | L,2,4-Trichlorobenzene | 1,2,3-Trichlorobenzene | <b>Toluene</b> | Tetrahydrofuran Tetrahydrofuran | Tetrachloroethene | 1,1,2,2-Tetrachloroethane | ert-Butyl Alcohol | Tert-Amyl Alcohol | Styrene | Methyl Tert Butyl Ether | 4-Methyl-2-pentanone(MIBK) | Methylene chloride | Methylcyclohexane | Methyl Chloride | Methyl Bromide | Methyl Acetate | p-IsopropyItoluene | sopropylbenzene | 2-Hexanone | Freon 113 | Ethylbenzene | trans-1,3-Dichloropropene | cis-1,3-Dichloropropene |
|------------------------|----------------|------------------------|------------------------|-----------------|-----------------------|-----------------------|------------------------|------------------------|----------------|---------------------------------|-------------------|---------------------------|-------------------|-------------------|---------|-------------------------|----------------------------|--------------------|-------------------|-----------------|----------------|----------------|--------------------|-----------------|------------|-----------|--------------|---------------------------|-------------------------|
| 6.4<br>5.7             | 5.7            |                        |                        |                 |                       |                       | 5.7                    |                        |                |                                 | 5.7               | 5.7                       |                   | 57                | 5.7     | 5.7                     | 29                         | 5.5                |                   |                 |                | 29             | 5.7                | 1.7             | 29         | 5.7       | 5.9          | 5.7                       |                         |
| ug/kg<br>ug/kg         | ug/kg          | ug/kg                  | ug/kg                  | ug/kg           | ug/kg                 | ug/kg                 | ug/kg                  | ug/kg                  | ug/kg          | ug/kg                           | ug/kg             | ug/kg                     | ug/kg             | ug/kg             | ug/kg   | ug/kg                   | ug/kg                      | ug/kg              | ug/kg             | ug/kg           | ug/kg          | ug/kg          | ug/kg              | ug/kg           | ug/kg      | ug/kg     | ug/kg        | ug/kg                     | ug/kg                   |
|                        |                |                        |                        |                 |                       |                       |                        |                        |                |                                 |                   |                           |                   |                   |         |                         |                            |                    |                   |                 |                |                |                    |                 |            |           |              |                           |                         |
| 1.0                    | 1.0            | 1.0                    | 1.0                    | 1.0             | 1.0                   | 1.0                   | 1.0                    | 1.0                    | 1.0            | 1.0                             | 1.0               | 1.0                       | 1.0               | 1.0               | 1.0     | 1.0                     | 1.0                        | 1.0                | 1.0               | 1.0             | 1.0            | 1.0            | 1.0                | 1.0             | 1.0        | 1.0       | 1.0          | 1.0                       | 1.0                     |
| .0                     | 1.0            | 1.0                    | 1.0                    | 1.0             | 1.0                   | 1.0                   | 1.0                    | 1.0                    | 1.0            | 1.0                             | 1.0               | 1.0                       | 1.0               | 1.0               | 1.0     | 1.0                     | 1.0                        | 1.0 J              | 1.0               | 1.0             | 1.0            | 1.0            | 1.0                | 1.0 J           | 1.0        | 1.0       | 1.0          | 1.0                       | 1.0                     |
| .0 . U                 |                | •                      | a                      |                 |                       | ×                     |                        | ÷C.                    | ı              |                                 | 34                | ı                         | c                 | я                 | •       | · C                     | 3                          | _                  | 1                 |                 | E              | ,              | ,                  | _               | 1          | 1.        | ı            | ,                         | κ                       |

.

# Sample ID: FA34192-6

# Sample location: BMSMC Building 5 Area Sampling date: 5/23/2016

Matrix: Soil

| IAIC                        | METHOD: 9790C |           |                                |          |            |            |
|-----------------------------|---------------|-----------|--------------------------------|----------|------------|------------|
| Analyte Name                | Result        | Units Dil | Units Dilution Factor Lab Flag | Lab Flag | Validation | Reportable |
| Acetone                     | 28000         | ug/kg     | 1.0                            |          | _          | Yes        |
| Benzene                     | 2800          | ug/kg     | 1.0                            | •        | <b>C</b>   | Yes        |
| Benzyl Chloride             | 2800          | ug/kg     | 1.0                            | r        | C          | Yes        |
| Bromochloromethane          | 2800          | ug/kg     | 1.0                            | 1        | _          | Yes        |
| Bromodichloromethane        | 2800          | ug/kg     | 1.0                            | •        | C          | Yes        |
| Bromoform                   | 2800          | ug/kg     | 1.0                            |          | <u> </u>   | Yes        |
| 2-Butanone (MEK)            | 14000         | ug/kg     | 1.0                            |          | <b>C</b>   | Yes        |
| Carbon disulfide            | 2800          | ug/kg     | 1.0                            | Έ        | <b>C</b>   | Yes        |
| Carbon tetrachloride        | 2800          | ug/kg     | 1.0                            | ,        | <b>C</b>   | Yes        |
| Chlorobenzene               | 2800          | ug/kg     | 1.0                            | É        | <b>C</b>   | Yes        |
| Chloroethane                | 2800          | ug/kg     | 1.0                            | ī.       | _          | Yes        |
| Chloroform                  | 2800          | ug/kg     | 1.0                            | ,        | _          | Yes        |
| Cyclohexane                 | 2800          | ug/kg     | 1.0                            | ,        | _          | Yes        |
| Dibromochloromethane        | 2800          | ug/kg     | 1.0                            | ı        | _          | Yes        |
| 1,2-Dibromo-3-chloropropane | 2800          | ug/kg     | 1.0                            | •        | _          | Yes        |
| 1,2-Dibromoethane           | 2800          | ug/kg     | 1.0                            | ĸ        | _          | Yes        |
| Dichlorodifluoromethane     | 2800          | ug/kg     | 1.0                            | 3        | <b>C</b>   | Yes        |
| 1,2-Dichlorobenzene         | 2800          | ug/kg     | 1.0                            | 1        | <b>C</b>   | Yes        |
| 1,3-Dichlorobenzene         | 2800          | ug/kg     | 1.0                            | π        | <b>C</b>   | Yes        |
| 1,4-Dichlorobenzene         | 2800          | ug/kg     | 1.0                            | b        | <b>C</b>   | Yes        |
| 1,1-Dichloroethane          | 2800          | ug/kg     | 1.0                            | c        | <b>C</b>   | Yes        |
| 1,2-Dichloroethane          | 2800          | ug/kg     | 1.0                            | 1        | <b>C</b>   | Yes        |
| 1,1-Dichloroethene          | 2800          | ug/kg     | 1.0                            | 1        | <b>C</b>   | Yes        |
| cis-1,2-Dichloroethene      | 2800          | ug/kg     | 1.0                            | 6        | <b>C</b>   | Yes        |
| trans-1,2-Dichloroethene    | 2800          | ug/kg     | 1.0                            | 3        | <b>C</b>   | Yes        |
| 1,2-Dichloropropane         | 2800          | ug/kg     | 1.0                            | .1       | <b>C</b>   | Yes        |

| o-Xylene | m,p-Xylene | Vinyl chloride | 1,2,4-Trimethylbenzene | Trichlorofluoromethane | richloroethene | ,1,2-Trichloroethane | ,1,1-Trichloroethane | ,2,4-Trichlorobenzene | .,2,3-Trichlorobenzene | Toluene | Tetrahydrofuran | Tetrachloroethene | 1,1,2,2-Tetrachloroethane | Tert-Butyl Alcohol | Tert-Amyl Alcohol | Styrene | Methyl Tert Butyl Ether | 4-Methyl-2-pentanone(MIBK) | Methylene chloride | Methylcyclohexane | Methyl Chloride | Methyl Bromide | Methyl Acetate | p-Isopropyltoluene | sopropylbenzene | 2-Hexanone | Freon 113 | Ethylbenzene | trans-1,3-Dichloropropene | cis-1,3-Dichloropropene |
|----------|------------|----------------|------------------------|------------------------|----------------|----------------------|----------------------|-----------------------|------------------------|---------|-----------------|-------------------|---------------------------|--------------------|-------------------|---------|-------------------------|----------------------------|--------------------|-------------------|-----------------|----------------|----------------|--------------------|-----------------|------------|-----------|--------------|---------------------------|-------------------------|
| 351000   | 4170000    | 2800           | 4610                   | 2800                   | 2800           | 2800                 | 2800                 | 2800                  | 2800                   | 2800    | 5700            | 2800              | 2800                      | 28000              | 28000             | 2800    | 2800                    | 14000                      | 4390               | 618               | 2800            | 2800           | 14000          | 2800               | 4120            | 14000      | 2800      | 1590000      | 2800                      | 2800                    |
| ug/kg    | ug/kg      | ug/kg          | ug/kg                  | ug/kg                  | ug/kg          | ug/kg                | ug/kg                | ug/kg                 | ug/kg                  | ug/kg   | ug/kg           | ug/kg             | ug/kg                     | ug/kg              | ug/kg             | ug/kg   | ug/kg                   | ug/kg                      | ug/kg              | ug/kg             | ug/kg           | ug/kg          | ug/kg          | ug/kg              | ug/kg           | ug/kg      | ug/kg     | ug/kg        | ug/kg                     | ug/kg                   |
| 1.0      | 1.0        | 1.0            | 1.0                    | 1.0                    | 1.0            | 1.0                  | 1.0                  | 1.0                   | 1.0                    | 1.0     | 1.0             | 1.0               | 1.0                       | 20                 | 1.0               | 1.0     | 1.0                     | 1.0                        | 1.0                | 1.0               | 1.0             | 1.0            | 1.0            | 1.0                | 1.0             | 1.0        | 1.0       | 10           | 1.0                       | 1.0                     |
|          |            |                |                        |                        |                |                      |                      |                       |                        |         |                 |                   |                           |                    |                   |         |                         |                            |                    |                   |                 |                |                |                    |                 |            |           |              |                           |                         |
|          |            | . 4            |                        | 1                      | *              | E                    | 23                   | 1                     | r)                     | 3       | r.              | 1                 | x                         | i s                | à                 | 1       | _                       | 1                          | _                  | _                 | 34              | Ü              | . 1            | *                  | r               | 3          | ï         | ë            | 4                         | ٠                       |
| _        | <u> </u>   | · ·            | •                      | С                      | · ·            | C                    | ) I                  | ,<br>C                |                        | _       | r;<br>□         | _                 | ``                        | L                  | _<br>_            | ,<br>C  | IJ                      | _ C                        | L L                | 2                 | _               | T C            | · C            | ·<br>C             | E.              | ]<br>      |           | c<br>t       |                           | ,<br>C                  |

. . .

Sample ID: FA34192-7

Sample location: BMSMC Building 5 Area Sampling date: 5/13/2016

Matrix: Groundwater

| ואובוווטט. מבמטכ |                                                   |                                         |                                         |                                                                                                 |                                         |
|------------------|---------------------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------|
| Result           | ٠.                                                | tion Factor                             | Lab Flag                                | Validation                                                                                      | Reportable                              |
| 25               | ug/L                                              | 1.0                                     |                                         | <b>C</b>                                                                                        | Yes                                     |
| 1.0              | ug/L                                              | 1.0                                     | 1                                       | C                                                                                               | Yes                                     |
| 1.0              | ug/L                                              | 1.0                                     | 1                                       | <b>C</b>                                                                                        | Yes                                     |
| 1.0              | ug/L                                              | 1.0                                     | 1                                       | C                                                                                               | Yes                                     |
| 1.0              | ug/L                                              | 1.0                                     | c                                       | <b>C</b>                                                                                        | Yes                                     |
| 1.0              | ug/L                                              | 1.0                                     |                                         | <b>C</b>                                                                                        | Yes                                     |
| 5.0              | ug/L                                              | 1.0                                     | 1                                       | <b>C</b>                                                                                        | Yes                                     |
| 2.0              | ug/L                                              | 1.0                                     | 1                                       | <b>C</b>                                                                                        | Yes                                     |
| 1.0              | ug/L                                              | 1.0                                     | 1                                       | <b>C</b>                                                                                        | Yes                                     |
| 1.0              | ug/L                                              | 1.0                                     | •                                       | <b>C</b>                                                                                        | Yes                                     |
| 2.0              | ug/L                                              | 1.0                                     | •                                       | <b>C</b>                                                                                        | Yes                                     |
| 1.0              | ug/L                                              | 1.0                                     | •                                       | <b>C</b>                                                                                        | Yes                                     |
| 1.0              | ug/L                                              | 1.0                                     | r                                       | <b>C</b>                                                                                        | Yes                                     |
| 1.0              | ug/L                                              | 1.0                                     | ī                                       | <b>C</b>                                                                                        | Yes                                     |
| 5.0              | ug/L                                              | 1.0                                     | r                                       | <b>C</b>                                                                                        | Yes                                     |
| 2.0              | ug/L                                              | 1.0                                     | r                                       | <b>C</b>                                                                                        | Yes                                     |
| 2.0              | ug/L                                              | 1.0                                     |                                         | C                                                                                               | Yes                                     |
| 1.0              | ug/L                                              | 1.0                                     | e                                       | <b>C</b>                                                                                        | Yes                                     |
| 1.0              | ug/L                                              | 1.0                                     | ï                                       | <b>C</b>                                                                                        | Yes                                     |
| 1.0              | ug/L                                              | 1.0                                     | :1                                      | <b>C</b>                                                                                        | Yes                                     |
| 1.0              | ug/L                                              | 1.0                                     | 1                                       | _                                                                                               | Yes                                     |
| 1.0              | ug/L                                              | 1.0                                     | •                                       | <b>C</b>                                                                                        | Yes                                     |
| 1,0              | ug/L                                              | 1.0                                     | •                                       | _                                                                                               | Yes                                     |
| 1,0              | ug/L                                              | 1.0                                     | •                                       | <b>C</b>                                                                                        | Yes                                     |
| 1.0              | ug/L                                              | 1.0                                     | •                                       | <b>C</b>                                                                                        | Yes                                     |
| 1.0              | ug/L                                              | 1.0                                     | 1                                       | C                                                                                               | Yes                                     |
|                  | Result 25 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 | ##/L ##/L ##/L ##/L ##/L ##/L ##/L ##/L | ##/L ##/L ##/L ##/L ##/L ##/L ##/L ##/L | ult Units Dilutio  ug/L  ug/L | ##/L ##/L ##/L ##/L ##/L ##/L ##/L ##/L |

| o-Xylene | m,p-Xylene | Vinyl chloride | 1,2,4-Trimethylbenzene | Trichlorofluoromethane | Trichloroethene | 1,1,2-Trichloroethane | 1,1,1-Trichloroethane | 1,2,4-Trichlorobenzene | 1,2,3-Trichlorobenzene | Toluene | Tetrahydrofuran | Tetrachloroethene | 1,1,2,2-Tetrachloroethane | Tert-Butyl Alcohol | Tert-Amyl Alcohol | Styrene | Methyl Tert Butyl Ether | 4-Methyl-2-pentanone(MIBK) | Methylene chloride | Methylcyclohexane | Methyl Chloride | Methyl Bromide | Methyl Acetate | p-Isopropyitoluene | Isopropylbenzene | 2-Hexanone | Freon 113 | Ethylbenzene | trans-1,3-Dichloropropene | cis-1,3-Dichloropropene |
|----------|------------|----------------|------------------------|------------------------|-----------------|-----------------------|-----------------------|------------------------|------------------------|---------|-----------------|-------------------|---------------------------|--------------------|-------------------|---------|-------------------------|----------------------------|--------------------|-------------------|-----------------|----------------|----------------|--------------------|------------------|------------|-----------|--------------|---------------------------|-------------------------|
|          |            |                |                        |                        |                 |                       |                       |                        |                        |         |                 |                   |                           |                    |                   |         |                         |                            |                    |                   |                 |                |                |                    |                  |            |           |              |                           |                         |
| 1.0      | 2.0        | 1.0            | 1.0                    | 2.0                    | 1.0             | 1.0                   | 1.0                   | 2.0                    | 2.0                    | 1.0     | 5.0             | 1.0               | 1.0                       | 20                 | 20                | 1.0     | 1.0                     | 5.0                        | 5.0                | 1.0               | 2.0             | 2.0            | 20             | 1.0                | 1.0              | 10         | 1.0       | 1.0          | 1.0                       | 1.0                     |
| ug/L     | ug/L       | ug/L           | ug/L                   | ug/L                   | ug/L            | ug/L                  | ug/L                  | ug∕L                   | ug∕L                   | ug/L    | ug/L            | ug/L              | ug/L                      | ug/L               | ug/L              | ug/L    | ug/L                    | ug/L                       | ug/L               | ug/L              | ug/L            | ug∕L           | ug∕L           | ug/L               | ug/L             | ug/L       | ug∕L      | ug/L         | ug∕L                      | ug/L                    |
| 1.0      | 1.0        | 1.0            | 1.0                    | 1.0                    | 1.0             | 1.0                   | 1.0                   | 1.0                    | 1.0                    | 1.0     | 1.0             | 1.0               | 1.0                       | 1.0                | 1.0               | 1.0     | 1.0                     | 1.0                        | 1.0                | 1.0               | 1.0             | 1.0            | 1.0            | 1.0                | 1.0              | 1.0        | 1.0       | 1.0          | 1.0                       | 1.0                     |
| ŗ        |            | 1              | r                      | 00                     | Э.              | ε                     | Э.                    |                        |                        | ,       | r               | 1                 | a a                       | ı:                 | · j               |         | e                       | 9                          | c                  | 1                 | a               | r              | э              | ï                  | c                | 3          | ,         | I€           | 1                         | ř.                      |
| C        | <b>C</b>   | <b>C</b>       | _                      | _                      | _               | _                     | <b>-</b>              | _                      | C                      | _       | <b>C</b>        | _                 | _                         | _                  | _                 | _       | _                       | _                          | <b>C</b>           | <b>C</b>          | <b>C</b>        | _              | <b>C</b>       | _                  | _                | _          | _         | _            | <b>_</b>                  | C                       |
| Yes      | Yes        | Yes            | Yes                    | Yes                    | Yes             | Yes                   | Yes                   | Yes                    | Yes                    | Yes     | Yes             | Yes               | Yes                       | Yes                | Yes               | Yes     | Yes                     | Yes                        | Yes                | Yes               | Yes             | Yes            | Yes            | Yes                | Yes              | Yes        | Yes       | Yes          | Yes                       | Yes                     |

. . . .

| Project Number  | :_FA34192       |
|-----------------|-----------------|
| Date:           | May_13-23,_2016 |
| Shipping date:_ | _May_23,_2016   |
| EPA Region:     |                 |

### REVIEW OF VOLATILE ORGANIC PACKAGE Low/Medium Volatile Data Validation

The following guidelines for evaluating volatile organics were created to delineate required validation actions. This document will assist the reviewer in using professional judgment to make more informed decision and in better serving the needs of the data users. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: USEPA Hazardous Waste Support Section SOP No. HW-33A Revision 0 SOM02.2. Low/Medium Volatile Data Validation. July, 2015. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

| X Blanks X Compound QuantitationX Surrogate Recoveries X Quantitation LimitsX Matrix Spike/Matrix Spike Duplicate OverallComments:VOA_TCL_list_(SW846_8260C)Sample_FA34192-7_(Trip_blank)_dated_05/13/16            | are from the primary guidance document, unless otherwi                                                                                                                      | se noted.                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| No. of Samples:                                                                                                                                                                                                     | The hardcopied (laboratory name)Accutest reviewed and the quality control and performance data s                                                                            | data package received has been ummarized. The data review for VOCs included:                           |
| X Holding TimesX GC/MS TuningX CalibrationsX Internal Standard PerformanceX Compound IdentificationsX BlanksX Compound QuantitationX Surrogate RecoveriesX Quantitation LimitsX Matrix Spike/Matrix Spike Duplicate | No. of Samples:7 Trip blank No.:FA34192-7 Field blank No.:FA34192-2                                                                                                         |                                                                                                        |
| J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated nondetect Reviewer: Aux aux aux                                                                                                        | X Holding TimesX GC/MS TuningX Internal Standard PerformanceX BlanksX Surrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate _OverallComments:VOA_TCL_list_(SW846_8260C) | X Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits |
| Reviewer: 10, 2016                                                                                                                                                                                                  | U- Compound not detected R- Rejected data UJ- Estimated nondetect                                                                                                           |                                                                                                        |
|                                                                                                                                                                                                                     | Reviewer:                                                                                                                                                                   |                                                                                                        |

### DATA COMPLETENESS

| MISSING INFORMATION | DATE LAB. CONTACTED | DATE RECEIVED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 10                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                     | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                     | <u> </u>            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                   |                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | 7                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| :37/11/85           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                     | 1987 - 128 - 128 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - 138 - |
|                     |                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | 100                 | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u></u>             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| All criteria were met _X |
|--------------------------|
| Criteria were not met    |
| and/or see below         |

### **HOLDING TIMES**

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

| SAMPLE ID                            | DATE SAMPLED DA |        | DATE ANALY  | DATE ANALYZED |       | ACTI   | ACTION       |        |
|--------------------------------------|-----------------|--------|-------------|---------------|-------|--------|--------------|--------|
| <u> </u>                             |                 |        |             |               |       |        |              | 2      |
|                                      | <u> </u>        |        |             |               |       | +      |              |        |
| All samples analy required criteria. | zed within      | method | recommended | holding       | time. | Sample | preservation | within |
|                                      |                 |        |             |               |       |        |              |        |
|                                      |                 |        | <u> </u>    |               |       |        |              |        |

### <u>Criteria</u>

Aqueous samples – 14 days from sample collection for preserved samples (pH  $\leq$  2, 4 $\pm$  2°C), no air bubbles.

Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles.

Soil samples- 14 days from sample collection.

Cooler temperature (Criteria: 4 ± 2 °C): 3.4° C - OK

### Actions

### Aqueous samples

- a. If there is no evidence that the samples were properly preserved (pH < 2, T =  $4^{\circ}$ C  $\pm$   $2^{\circ}$ C), but the samples were analyzed within the technical holding time [7 days from sample collection], no qualification of the data is necessary.
- b. If there is no evidence that the samples were properly preserved, and the samples were analyzed outside of the technical holding time [7 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as unusable (R).
- c. If the samples were properly preserved, and the samples were analyzed within the technical holding time [14 days from sample collection], no qualification of the data is necessary.
- d. If the samples were properly preserved, but were analyzed outside of the technical holding time [14 days from sample collection], qualify detects as estimated (J) and non-detects as unusable (R).
- e. If air bubbles were present in the sample vial used for analysis, qualify detected compounds as estimated (J-) and non-detected compounds as estimated (UJ).

### Non-aqueous samples

- a. If there is no evidence that the samples were properly preserved (T < -7°C or T = 4°C  $\pm$  2°C and preserved with NaHSO<sub>4</sub>), but the samples were analyzed within the technical holding time [14 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as (UJ) or unusable (R) using professional judgment.
- b. If the samples were properly preserved, and the samples were analyzed within the technical holding time [14 days from sample collection], no qualification of the data is necessary.
- c. If there is no evidence that the samples were properly preserved, and the samples were analyzed outside of the technical holding time [14 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as unusable (R).
- d. If the samples were properly preserved, but were analyzed outside of the technical holding time [14 days from sample collection], qualify detects as estimated (J) and non-detects as unusable (R).

### Qualify TCLP/SPLP samples

- a. If the TCLP/SPLP ZHE procedure is performed within the extraction technical holding time of 14 days, detects and non-detects should not be qualified.
- b. If the TCLP/SPLP ZHE procedure is performed outside the extraction technical holding time of 14 days, qualify detects as estimated (J) and non-detects as unusable (R).
- c. If TCLP/SPLP aqueous samples and TCLP/SPLP leachate samples are analyzed within the technical holding time of 7 days, detects and non-detects should not be qualified.
- d. If TCLP/SPLP aqueous samples and TCLP/SPLP leachate samples are analyzed outside of the technical holding time of 7 days, qualify detects as estimated (J) and non-detects as unusable (R).

Table 1. Holding Time Actions for Low/Medium Volatile Analyses - Summary

|             |           |           | Action                              |                                         |  |
|-------------|-----------|-----------|-------------------------------------|-----------------------------------------|--|
| Matrix      | Preserved | Criteria  | Detected<br>Associated<br>Compounds | Non-Detected<br>Associated<br>Compounds |  |
|             | No        | ≤ 7 days  | No qualification                    |                                         |  |
| Aqueous     | No        | > 7 days  | J                                   | R                                       |  |
|             | Yes       | ≤ 14 days | No qualification                    |                                         |  |
|             | Yes       | > 14 days | J                                   | R                                       |  |
| Non-Aqueous | No        | ≤ 14 days | J                                   | Professional judgment,<br>UJ or R       |  |
|             | Yes       | ≤ 14 days | No qualification                    |                                         |  |
|             | Yes/No    | > 14 days | J                                   | R                                       |  |
| TCLP/SPLP   | Yes       | ≤ 14 days | No qualification                    |                                         |  |
| TCLP/SPLP   | No        | > 14 days | J                                   | R                                       |  |

| TCLP/SPLP                                                           | ZHE performed within<br>the 14-day technical<br>holding time  | No qualification          |   |  |
|---------------------------------------------------------------------|---------------------------------------------------------------|---------------------------|---|--|
| TCLP/SPLP                                                           | ZHE performed outside<br>the 14-day technical<br>holding time | J                         | R |  |
| TCLP/SPLP<br>aqueous &<br>TCLP/SPLP<br>leachate                     | Analyzed within 7 days                                        | No qualification          |   |  |
| TCLP/SPLP<br>aqueous &<br>TCLP/SPLP<br>leachate                     | Analyzed outside 7 days                                       | J                         | R |  |
| Sample temperature outside 4°C ± 2°C upon receipt at the laboratory |                                                               | Use professional judgment |   |  |
| Holding times grossly exceeded                                      |                                                               | J                         | R |  |

| All           | criteria were met _ | _X |
|---------------|---------------------|----|
| Criteria Were | not met see below   |    |

#### GC/MS TUNING

The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits

\_\_X\_\_ The BFB performance results were reviewed and found to be within the specified criteria.
\_\_X\_\_ BFB tuning was performed for every 12 hours of sample analysis.

**NOTES:** All mass spectrometer instrument conditions must be identical to those used during the sample analysis. Background subtraction actions resulting in spectral distortions for the sole purpose of meeting the method specifications are contrary to the Quality Assurance (QA) objectives, and are therefore unacceptable.

NOTES: No data should be qualified based on BFB failure. Instances of this should be noted in the narrative.

All ion abundance ratios must be normalized to m/z 95, the nominal base peak, even though the ion abundance of m/z 174 may be up to 120% that of m/z 95.

#### Actions:

If samples are analyzed without a preceding valid instrument performance check, qualify all data in those samples as unusable (R).

If ion abundance criteria are not met, professional judgment may be applied to determine to what extent the data may be utilized. When applying professional judgment to this topic, the most important factors to consider are the empirical results that are relatively insensitive to location on the chromatographic profile and the type of instrumentation. Therefore, the critical ion abundance criteria for BFB are the m/z 95/96, 174/176, and 176/177 ratios. The relative abundances of m/z 50 and 75 are of lower importance. This issue is more critical for Tentatively Identified Compounds (TICs) than for target analytes.

**Note:** State in the Data Review Narrative, decisions to use analytical data associated with BFB instrument performance checks not meeting contract requirements.

Note: Verify that that instrument instrument performance check criteria were achieved using techniques described in Low/Medium Volatiles Organic Analysis, Section II.D.5 of the SOM02.2 NFG, obtain additional information on the instrument performance checks. Make sure that background subtraction was performed from the BFB peak and not from background subtracting from the solvent front or from another region of the chromatogram.

#### **DATA REVIEW WORKSHEETS**

|                     | judgment to determine whethe<br>lass calibration compound. | r associated data should | be qualified based on the |
|---------------------|------------------------------------------------------------|--------------------------|---------------------------|
| List                | the                                                        | samples                  | affected:                 |
| -                   |                                                            |                          |                           |
|                     |                                                            |                          |                           |
|                     |                                                            |                          |                           |
| If mass calibration | is in error, all associated data a                         | re rejected.             |                           |

| All criteria were met |
|-----------------------|
| Criteria were not met |
| and/or see belowX     |

#### CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

| 05/24/16           |
|--------------------|
| 05/24/16           |
| 05/25/16           |
| 05/24/16;_05/25/16 |
| GCMSJ              |
| Aqueous/low        |
|                    |

| DATE     | LAB FILE  | CRITERIA OUT             | COMPOUND                 | SAMPLES          |
|----------|-----------|--------------------------|--------------------------|------------------|
|          | ID#       | RFs, %RSD, <u>%D</u> , r |                          | AFFECTED         |
| GCMSY    |           |                          |                          | •                |
| 05/26/16 | ECC1149-4 | -37.3                    | 1,1-Dichloroethene       | FA34192-5; -6    |
|          |           | -64.2                    | Methyl acetate           |                  |
|          |           | -55.8                    | trans-1,2-dichloroethene |                  |
| GCMSJ    |           |                          |                          |                  |
| 05/25/16 | cc5312-5  | 24.2                     | Dichlorodifluoromethane* | FA34192-1 to -4; |
|          |           | 21.8                     | Trichlorofluoromethane*  | and -7           |
|          |           |                          | 10                       |                  |
|          |           |                          |                          |                  |
|          |           |                          |                          |                  |
|          |           |                          |                          |                  |

Note: Initial calibration, initial calibration verification, and continuing calibration verification within the validation guidance document required criteria except in the cases described in this document. Closing calibration check verification included in data package.

\* Analytes with continuing calibration % difference within the guidance document validation criteria of  $\pm$  25 % or  $\pm$  30 %. No action taken.

For analytes with ending calibration % difference outside the guidance document validation criteria of  $\pm$  25 % or  $\pm$  50 % difference no qualification was performed. No action taken, professional judgment.

#### Criteria

The analyte calibration criteria in the following Table must be obtained. Analytes not meeting the criteria are qualified.

A separate worksheet should be filled for each initial curve

Initial Calibration - Table 2. RRF, %RSD, and %D Acceptance Criteria for Initial Calibration and CCV for Low/Medium Volatile Analysis

| Analyte                               | Minimum<br>RRF | Maximum<br>%RSD | Opening<br>Maximum %D <sup>1</sup> | Closing<br>Maximum %D |
|---------------------------------------|----------------|-----------------|------------------------------------|-----------------------|
| Dichlorodifluoromethane               | 0.010          | 25.0            | ±40.0                              | ±50.0                 |
| Chloromethane                         | 0.010          | 20.0            | ±30.0                              | ±50.0                 |
| Vinyl chloride                        | 0.010          | 20.0            | ±25.0                              | ±50.0                 |
| Bromomethane                          | 0.010          | 40.0            | ±30.0                              | ±50.0                 |
| Chloroethane                          | 0.010          | 40.0            | ±25.0                              | ±50.0                 |
| Trichlorofluoromethane                | 0.010          | 40.0            | ±30.0                              | ±50.0                 |
| 1,1-Dichloroethene                    | 0.060          | 20.0            | ±20.0                              | ±25.0                 |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 0.050          | 25.0            | ±25.0                              | ±50.0                 |
| Acetone                               | 0.010          | 40.0            | ±40.0                              | ±50.0                 |
| Carbon disulfide                      | 0.100          | 20.0            | ±25.0                              | ±25.0                 |
| Methyl acetate                        | 0.010          | 40.0            | ±40.0                              | ±50.0                 |
| Methylene chloride                    | 0.010          | 40.0            | ±30.0                              | ±50.0                 |
| trans-1,2-Dichloroethene              | 0.100          | 20.0            | ±20.0                              | ±25.0                 |
| Methyl tert-butyl ether               | 0.100          | 40.0            | ±25.0                              | ±50.0                 |
| 1,1-Dichloroethane                    | 0.300          | 20.0            | ±20.0                              | ±25.0                 |
| cis-1,2-Dichloroethene                | 0.200          | 20.0            | ±20.0                              | ±25.0                 |
| 2-Butanone                            | 0.010          | 40.0            | ±40.0                              | ±50.0                 |
| Bromochloromethane                    | 0.100          | 20.0            | ±20.0                              | ±25.0                 |
| Chloroform                            | 0.300          | 20.0            | ±20.0                              | ±25.0                 |
| 1,1,1-Trichloroethane                 | 0.050          | 20.0            | ±25.0                              | ±25.0                 |
| Cyclohexane                           | 0.010          | 40.0            | ±25.0                              | ±50.0                 |
| Carbon tetrachloride                  | 0.100          | 20.0            | ±25.0                              | ±25.0                 |
| Benzene                               | 0.200          | 20.0            | ±20.0                              | ±25.0                 |
| 1,2-Dichloroethane                    | 0.070          | 20.0            | ±20.0                              | ±25.0                 |
| Trichloroethene                       | 0.200          | 20.0            | ±20.0                              | ±25.0                 |
| Methylcyclohexane                     | 0.050          | 40.0            | ±25.0                              | ±50.0                 |
| 1,2-Dichloropropane                   | 0.200          | 20.0            | ±20.0                              | ±25.0                 |
| Bromodichloromethane                  | 0.300          | 20.0            | ±20.0                              | ±25.0                 |
| cis-1,3-Dichloropropene               | 0.300          | 20.0            | ±20.0                              | ±25.0                 |
| 4-Methyl-2-pentanone                  | 0.030          | 25.0            | ±30.0                              | ±50.0                 |
| Toluene                               | 0.300          | 20.0            | ±20.0                              | ±25.0                 |
| trans-1,3-Dichloropropene             | 0.200          | 20.0            | ±20.0                              | ±25.0                 |
| 1,1,2-Trichloroethane                 | 0.200          | 20.0            | ±20.0                              | ±25.0                 |
| Tetrachloroethene                     | 0.100          | 20.0            | ±20.0                              | ±25.0                 |
| 2-Hexanone                            | 0.010          | 40.0            | ±40.0                              | ±50.0                 |
| Dibromochloromethane                  | 0.200          | 20.0            | ±20.0                              | ±25.0                 |
| 1,2-Dibromoethane                     | 0.200          | 20.0            | ±20.0                              | ±25.0                 |
| Chlorobenzene                         | 0.400          | 20.0            | ±20.0                              | ±25.0                 |
| Ethylbenzene                          | 0.400          | 20.0            | ±20.0                              | ±25.0                 |

| o-Xylene         0.200         20.0         ±20.0         ±25.0           Styrene         0.200         20.0         ±20.0         ±25.0           Bromoform         0.100         20.0         ±25.0         ±50           Isopropylbenzene         0.400         20.0         ±25.0         ±25           1,1,2,2-Tetrachloroethane         0.200         20.0         ±25.0         ±25           1,3-Dichlorobenzene         0.500         20.0         ±20.0         ±25           1,4-Dichlorobenzene         0.600         20.0         ±20.0         ±25           1,2-Dichlorobenzene         0.600         20.0         ±20.0         ±25           1,2-Dichlorobenzene         0.600         20.0         ±30.0         ±50           1,2-Dichlorobenzene         0.400         25.0         ±30.0         ±50           1,2,4-Trichlorobenzene         0.400         25.0         ±30.0         ±50           1,2.3-Trichlorobenzene         0.400         25.0         ±30.0         ±50           Deuterated Monitoring Compound         Vinyl chloride-ds         0.010         40.0         ±30.0         ±50           Chloroethane-ds         0.010         40.0         ±30.0         ±50                                                   |     | Closin<br>Maximu | Opening<br>Maximum %D <sup>1</sup> | Maximum<br>%RSD | Minimum<br>RRF | Analyte                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------|------------------------------------|-----------------|----------------|--------------------------------|
| Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.0 | ±25.0            | ±20.0                              | 20.0            | 0.200          | ın.p-Xylene                    |
| Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.0 | ±25.0            | ±20.0                              | 20.0            | 0.200          | o-Xylene                       |
| Sopropylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0 | ±25.0            | ±20.0                              | 20.0            | 0.200          | Styrene                        |
| 1.1.2.2-Tetrachloroethane         0.200         20.0         ±25.0         ±25.1           1.3-Dichlorobenzene         0.500         20.0         ±20.0         ±25.1           1.4-Dichlorobenzene         0.600         20.0         ±20.0         ±25.1           1.2-Dichlorobenzene         0.600         20.0         ±20.0         ±25.1           1.2-Dibromo-3-chloropropane         0.010         25.0         ±30.0         ±50.1           1.2,4-Trichlorobenzene         0.400         20.0         ±30.0         ±50.1           1.2.3-Trichlorobenzene         0.400         25.0         ±30.0         ±50.1           1.2.3-Trichlorobenzene         0.400         25.0         ±30.0         ±50.1           1.2.3-Trichlorobenzene         0.400         25.0         ±30.0         ±50.1           1.2.3-Trichlorobenzene         0.010         40.0         ±30.0         ±50.1           1.2.3-Trichlorofenzene         0.010         40.0         ±30.0         ±50.1           1.1-Dichloroethane-ds         0.010         40.0         ±30.0         ±50.1           1.1-Dichloroethane-ds         0.010         40.0         ±40.0         ±50.1           1.2-Dichloroethane-ds         0.000         20.0                          | 0.0 | ±50.0            | ±25.0                              | 20.0            | 0.100          | Bromoform                      |
| 1,3-Dichlorobenzene       0.500       20.0       ±20.0       ±25.0         1,4-Dichlorobenzene       0.600       20.0       ±20.0       ±25.0         1,2-Dichlorobenzene       0.600       20.0       ±20.0       ±25.0         1,2-Dibromo-3-chloropropane       0.010       25.0       ±30.0       ±50         1,2,4-Trichlorobenzene       0.400       20.0       ±30.0       ±50         1,2,3-Trichlorobenzene       0.400       25.0       ±30.0       ±50         Deuterated Monitoring Compound       Vinyl chloride-d3       0.010       20.0       ±30.0       ±50         Chloroethane-d5       0.010       40.0       ±30.0       ±50         1,1-Dichloroethene-d2       0.050       20.0       ±25.0       ±25         2-Butanone-d3       0.010       40.0       ±40.0       ±50         Chloroform-d       0.300       20.0       ±25.0       ±25         1,2-Dichloroethane-d3       0.060       20.0       ±25.0       ±25         Benzene-d6       0.300       20.0       ±20.0       ±25         1,2-Dichloropropane-d6       0.200       20.0       ±20.0       ±25         Toluene-d8       0.200       20.0       ±20.0                                                                                                                | 5.0 | ±25.0            | ±25.0                              | 20.0            | 0.400          | Isopropylbenzene               |
| 1,4-Dichlorobenzene       0.600       20.0       ±20.0       ±25.0         1,2-Dichlorobenzene       0.600       20.0       ±20.0       ±25.1         1,2-Dibromo-3-chloropropane       0.010       25.0       ±30.0       ±50         1,2,4-Trichlorobenzene       0.400       20.0       ±30.0       ±50         1,2,3-Trichlorobenzene       0.400       25.0       ±30.0       ±50         Deuterated Monitoring Compound       Winyl chloride-ds       0.010       20.0       ±30.0       ±50         Chloroethane-ds       0.010       40.0       ±30.0       ±50         1,1-Dichloroethene-ds       0.050       20.0       ±25.0       ±25         2-Butanone-ds       0.010       40.0       ±40.0       ±50         Chloroform-d       0.300       20.0       ±25.0       ±25         1,2-Dichloroethane-ds       0.300       20.0       ±25.0       ±25         Benzene-ds       0.300       20.0       ±20.0       ±25         1,2-Dichloropropane-ds       0.200       20.0       ±20.0       ±25         Toluene-ds       0.300       20.0       ±20.0       ±25         1-Hexanone-ds       0.010       40.0       ±40.0 <td< td=""><td>5.0</td><td>±25.0</td><td>±25.0</td><td>20.0</td><td>0.200</td><td>1,1,2,2-Tetrachloroethane</td></td<> | 5.0 | ±25.0            | ±25.0                              | 20.0            | 0.200          | 1,1,2,2-Tetrachloroethane      |
| 1,2-Dichlorobenzene         0.600         20.0         ±20.0         ±25           1,2-Dibromo-3-chloropropane         0.010         25.0         ±30.0         ±50           1,2,4-Trichlorobenzene         0.400         20.0         ±30.0         ±50           1,2,3-Trichlorobenzene         0.400         25.0         ±30.0         ±50           Deuterated Monitoring Compound           Vinyl chloride-d₃         0.010         20.0         ±30.0         ±50           Chloroethane-d₃         0.010         40.0         ±30.0         ±50           1,1-Dichloroethene-d₂         0.050         20.0         ±25.0         ±25           2-Butanone-d₃         0.010         40.0         ±40.0         ±50           Chloroform-d         0.300         20.0         ±25.0         ±25           1,2-Dichloroethane-d₃         0.060         20.0         ±25.0         ±25           Benzene-d₃         0.300         20.0         ±20.0         ±25           1,2-Dichloropropane-d₃         0.200         20.0         ±20.0         ±25           Toluene-d₃         0.300         20.0         ±20.0         ±25           1-2-Hexanone-d₃         0.010         40.0                                                                     | 5.0 | ±25.0            | ±20.0                              | 20.0            | 0.500          | 1,3-Dichlorobenzene            |
| 1.2-Dibromo-3-chloropropane         0.010         25.0         ±30.0         ±50           1,2,4-Trichlorobenzene         0.400         20.0         ±30.0         ±50           1,2,3-Trichlorobenzene         0.400         25.0         ±30.0         ±50           Deuterated Monitoring Compound           Vinyl chloride-d3         0.010         20.0         ±30.0         ±50           Chloroethane-ds         0.010         40.0         ±30.0         ±50           1,1-Dichloroethene-ds         0.050         20.0         ±25.0         ±25           2-Butanone-ds         0.010         40.0         ±40.0         ±50           Chloroform-d         0.300         20.0         ±25.0         ±25           1,2-Dichloroethane-ds         0.060         20.0         ±25.0         ±25           Benzene-ds         0.300         20.0         ±20.0         ±25           1,2-Dichloropropane-ds         0.200         20.0         ±20.0         ±25           Toluene-ds         0.300         20.0         ±20.0         ±25           Telashoropropene-ds         0.200         20.0         ±20.0         ±25           Telashoropropene-ds         0.200         20.                                                                  | 5.0 | ±25.0            | ±20.0                              | 20.0            | 0.600          |                                |
| 1,2,4-Trichlorobenzene       0.400       20.0       ±30.0       ±50         1,2,3-Trichlorobenzene       0.400       25.0       ±30.0       ±50         Deuterated Monitoring Compound         Vinyl chloride-d₃       0.010       20.0       ±30.0       ±50         Chloroethane-d₃       0.010       40.0       ±30.0       ±50         1,1-Dichloroethene-d₂       0.050       20.0       ±25.0       ±25         2-Butanone-d₃       0.010       40.0       ±40.0       ±50         Chloroform-d       0.300       20.0       ±20.0       ±25         1,2-Dichloroethane-d₃       0.060       20.0       ±25.0       ±25         Benzene-d₃       0.300       20.0       ±20.0       ±25         1,2-Dichloropropane-d₃       0.200       20.0       ±20.0       ±25         Toluene-d₃       0.300       20.0       ±20.0       ±25         trans-1,3-Dichloropropene-d₃       0.200       20.0       ±20.0       ±25         2-Hexanone-d₃       0.010       40.0       ±40.0       ±50                                                                                                                                                                                                                                                                 | 5.0 | ±25.0            | ±20.0                              | 20.0            | 0.600          | 1,2-Dichlorobenzene            |
| 1,2,3-Trichlorobenzene         0.400         25.0         ±30.0         ±50           Deuterated Monitoring Compound         Vinyl chloride-d3         0.010         20.0         ±30.0         ±50           Chloroethane-ds         0.010         40.0         ±30.0         ±50           1,1-Dichloroethene-ds         0.050         20.0         ±25.0         ±25           2-Butanone-ds         0.010         40.0         ±40.0         ±50           Chloroform-d         0.300         20.0         ±20.0         ±25           1,2-Dichloroethane-ds         0.300         20.0         ±25.0         ±25           Benzene-ds         0.300         20.0         ±20.0         ±25           1,2-Dichloropropane-ds         0.200         20.0         ±20.0         ±25           Toluene-ds         0.300         20.0         ±20.0         ±25           trans-1,3-Dichloropropene-ds         0.200         20.0         ±20.0         ±25           2-Hexanone-ds         0.010         40.0         ±40.0         ±50                                                                                                                                                                                                                       | 0.0 | ±50.0            | ±30.0                              | 25.0            | 0.010          | 1,2-Dibromo-3-chloropropane    |
| Deuterated Monitoring Compound   Vinyl chloride-d3   0.010   20.0   ±30.0   ±50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0 | ±50.0            | ±30.0                              | 20.0            | 0.400          | 1,2,4-Trichlorobenzene         |
| Vinyl chloride-ds         0.010         20.0         ±30.0         ±50           Chloroethane-ds         0.010         40.0         ±30.0         ±50           1,1-Dichloroethene-ds         0.050         20.0         ±25.0         ±25           2-Butanone-ds         0.010         40.0         ±40.0         ±50           Chloroform-d         0.300         20.0         ±20.0         ±25           1,2-Dichloroethane-ds         0.060         20.0         ±25.0         ±25           Benzene-ds         0.300         20.0         ±20.0         ±25           1,2-Dichloropropane-ds         0.200         20.0         ±20.0         ±25           Toluene-ds         0.300         20.0         ±20.0         ±25           trans-1,3-Dichloropropene-ds         0.200         20.0         ±20.0         ±25           2-Hexanone-ds         0.010         40.0         ±40.0         ±50                                                                                                                                                                                                                                                                                                                                                    | 0.0 | ±50.0            | ±30.0                              | 25.0            | 0.400          | 1,2,3-Trichlorobenzene         |
| Chloroethane-ds         0.010         40.0         ±30.0         ±50           1,1-Dichloroethene-ds         0.050         20.0         ±25.0         ±25           2-Butanone-ds         0.010         40.0         ±40.0         ±50           Chloroform-d         0.300         20.0         ±20.0         ±25           1,2-Dichloroethane-ds         0.060         20.0         ±25.0         ±25           Benzene-ds         0.300         20.0         ±20.0         ±25           1,2-Dichloropropane-ds         0.200         20.0         ±20.0         ±25           Toluene-ds         0.300         20.0         ±20.0         ±25           trans-1,3-Dichloropropene-ds         0.200         20.0         ±20.0         ±25           2-Hexanone-ds         0.010         40.0         ±40.0         ±50                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |                  |                                    |                 |                | Deuterated Monitoring Compound |
| 1,1-Dichloroethene-de         0.050         20.0         ±25.0         ±25           2-Butanone-ds         0.010         40.0         ±40.0         ±50           Chloroform-d         0.300         20.0         ±20.0         ±25           1,2-Dichloroethane-ds         0.060         20.0         ±25.0         ±25           Benzene-ds         0.300         20.0         ±20.0         ±25           1,2-Dichloropropane-ds         0.200         20.0         ±20.0         ±25           Toluene-ds         0.300         20.0         ±20.0         ±25           trans-1,3-Dichloropropene-ds         0.200         20.0         ±20.0         ±25           2-Hexanone-ds         0.010         40.0         ±40.0         ±50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0 | ±50.0            | ±30.0                              | 20.0            | 0.010          | Vinyl chloride-d3              |
| 2-Butanone-ds         0.010         40.0         ±40.0         ±50           Chloroform-d         0.300         20.0         ±20.0         ±25           1,2-Dichloroethane-ds         0.060         20.0         ±25.0         ±25           Benzene-ds         0.300         20.0         ±20.0         ±25           1,2-Dichloropropane-ds         0.200         20.0         ±20.0         ±25           Toluene-ds         0.300         20.0         ±20.0         ±25           trans-1,3-Dichloropropene-ds         0.200         20.0         ±20.0         ±25           2-Hexanone-ds         0.010         40.0         ±40.0         ±50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0 | ±50.0            | ±30.0                              | 40.0            | 0.010          | Chloroethane-ds                |
| Chloroform-d         0.300         20.0         ±20.0         ±25           1,2-Dichloroethane-d₃         0.060         20.0         ±25.0         ±25           Benzene-d₃         0.300         20.0         ±20.0         ±25           1,2-Dichloropropane-d₃         0.200         20.0         ±20.0         ±25           Toluene-d₃         0.300         20.0         ±20.0         ±25           trans-1,3-Dichloropropene-d₃         0.200         20.0         ±20.0         ±25           2-Hexanone-d₃         0.010         40.0         ±40.0         ±50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.0 | ±25.0            | ±25.0                              | 20.0            | 0.050          | 1,1-Dichloroethene-d2          |
| 1,2-Dichloroethane-ds       0.060       20.0       ±25.0       ±25         Benzene-ds       0.300       20.0       ±20.0       ±25         1,2-Dichloropropane-ds       0.200       20.0       ±20.0       ±25         Toluene-ds       0.300       20.0       ±20.0       ±25         trans-1,3-Dichloropropene-ds       0.200       20.0       ±20.0       ±25         2-Hexanone-ds       0.010       40.0       ±40.0       ±50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0 | ±50.0            | ±40.0                              | 40.0            | 0.010          | 2-Butanone-ds                  |
| Benzene-ds         0.300         20.0         ±20.0         ±25           1,2-Dichloropropane-ds         0.200         20.0         ±20.0         ±25           Toluene-ds         0.300         20.0         ±20.0         ±25           trans-1,3-Dichloropropene-ds         0.200         20.0         ±20.0         ±25           2-Hexanone-ds         0.010         40.0         ±40.0         ±50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.0 | ±25.0            | ±20.0                              | 20.0            | 0.300          | Chloroform-d                   |
| 1,2-Dichloropropane-d₀       0.200       20.0       ±20.0       ±25         Toluene-d₀       0.300       20.0       ±20.0       ±25         trans-1,3-Dichloropropene-d₀       0.200       20.0       ±20.0       ±25         2-Hexanone-d₀       0.010       40.0       ±40.0       ±50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.0 | ±25.0            | ±25.0                              | 20.0            | 0.060          | 1,2-Dichloroethane-da          |
| Toluene-ds         0.300         20.0         ±20.0         ±25           trans-1,3-Dichloropropene-d4         0.200         20.0         ±20.0         ±25           2-Hexanone-ds         0.010         40.0         ±40.0         ±50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.0 | ±25.0            | ±20.0                              | 20.0            | 0.300          | Benzene-ds                     |
| Toluene-ds         0.300         20.0         ±20.0         ±25           trans-1,3-Dichloropropene-d4         0.200         20.0         ±20.0         ±25           2-Hexanone-ds         0.010         40.0         ±40.0         ±50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.0 | ±25.0            | ±20.0                              | 20.0            | 0.200          | 1,2-Dichloropropane-d₀         |
| 2-Hexanone-ds 0.010 40.0 ±40.0 ±50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.0 | ±25.0            | ±20.0                              | 20.0            | 0.300          |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0 | ±25.0            | ±20.0                              | 20.0            | 0.200          | trans-1,3-Dichloropropene-d4   |
| 11337, 11 () 1 0000 000 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0 | ±50.0            | ±40.0                              | 40.0            | 0.010          | 2-Hexanone-ds                  |
| $\frac{1,1,2,2-1}{200}$ erachforoethane-d <sub>2</sub> $\frac{1,2,2}{200}$ $\frac{1,2,2}{200}$ $\frac{1,2,2}{200}$ $\frac{1,2,2}{200}$ $\frac{1,2,2}{200}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.0 | ±25.0            | ±25.0                              | 20.0            | 0.200          | 1,1,2,2-Tetrachloroethane-d2   |
| 1,2-Dichlorobenzene-d <sub>4</sub> 0.400 20.0 ±20.0 ±25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.0 | ±25.0            | ±20.0                              | 20.0            | 0.400          | 1,2-Dichlorobenzene-d4         |

If a closing CCV is acting as an opening CCV, all target analytes and DMCs must meet the requirements for an opening CCV.

#### Actions:

- 1. If any volatile target compound has an RRF value less than the minimum in the table, use professional judgment for detects, based on mass spectral identification, to qualify the data as estimated (J+ or R).
  - a. If any volatile target compound has an RRF value less than the minimum criterion, qualify non-detected compounds as unusable (R).
  - b. If any of the volatile target compounds listed in the Table has %RSD greater than the criteria, qualify detects as estimated (J), and non-detected compounds using professional judgment.
  - c. If the volatile target compounds meet the acceptance criteria for RRF and the %RSD, no qualification of the data is necessary.

- d. No qualification of the data is necessary on the DMC RRF and %RSD data alone. Use professional judgment and follow the guidelines in Action 2 to evaluate the DMC RRF and %RSD data in conjunction with the DMC recoveries to determine the need for qualification of data.
- 2. At the reviewer's discretion, and based on the project-specific Data Quality Objectives (DQOs), a more in-depth review may be considered using the following guidelines:
  - a. If any volatile target compound has a %RSD greater than the maximum criterion in the Table, and if eliminating either the high or the low-point of the curve does not restore the %RSD to less than or equal to the required maximum:
    - i. Qualify detects for that compound(s) as estimated (J).
    - ii. Qualify non-detected volatile target compounds using professional judgment.
  - b. If the high-point of the curve is outside of the linearity criteria (e.g., due to saturation):
    - i. Qualify detects outside of the linear portion of the curve as estimated (J).
    - ii. No qualifiers are required for detects in the linear portion of the curve.
    - iii. No qualifiers are required for volatile target compounds that were not detected.
  - c. If the low-point of the curve is outside of the linearity criteria:
    - Qualify low-level detects in the area of non-linearity as estimated (J).
    - ii. No qualifiers are required for detects in the linear portion of the curve.
    - iii. For non-detected volatile compounds, use the lowest point of the linear portion of the curve to determine the new quantitation limit.

**Note:** If the laboratory has failed to provide adequate calibration information, inform the Region's designated representative to contact the laboratory and request the necessary information. If the information is not available, the reviewer must use professional judgment to assess the data.

State in the Data Review Narrative, if possible, the potential effects on the data due to calibration criteria exceedance.

Note, for the Laboratory COR action, if calibration criteria are grossly exceeded.

Table. Initial Calibration Actions for Low/Medium Volatile Analysis – Summary

| Criteria                                                              | Action                                  |                                   |  |
|-----------------------------------------------------------------------|-----------------------------------------|-----------------------------------|--|
| Criteria                                                              | Detect                                  | Non-detect                        |  |
| Initial Calibration not performed at specified frequency and sequence | Use professional<br>judgment<br>R       | Use professional<br>judgment<br>R |  |
| Initial Calibration not performed at the specified concentrations     | J                                       | UJ                                |  |
| RRF Minimum RRF in Table for target analyte                           | Use professional<br>judgment<br>J+ or R | R                                 |  |
| RRF > Minimum RRF in Table for target analyte                         | No qualification                        | No qualification                  |  |
| %RSD = Maximum %RSD in Table<br>for target analyte                    | J                                       | Use professional<br>judgment      |  |
| %RSD ≤ Maximum %RSD in Table<br>for target analyte                    | No qualification                        | No qualification                  |  |

| All criteria were met |
|-----------------------|
| Criteria were not met |
| and/or see belowX     |

# **Continuing Calibration Verification (CCV)**

NOTE: Verify that the CCV was run at the required frequency (an opening and closing CCV must be run within 12-hour period) and the CCV was compared to the correct initial calibration. If the midpoint standard from the initial calibration is used as an opening CCV, verify that the result (RRF) of the mid-point standard was compared to the average RRF from the correct initial calibration.

The closing CCV used to bracket the end of a 12-hour analytical sequence may be used as the opening CCV for the new 12-hour analytical sequence, provided that all the technical acceptance criteria are met for an opening CCV (see criteria show before in the Table). If the closing CCV does not meet the technical acceptance criteria for an opening CCV, then a BFB tune followed by an opening CCV is required and the next 12-hour time period begins with the BFB tune.

All DMCs must meet RRF criteria. No qualification of the data is necessary on the DMCs RRF and %RSD/%D data alone. However, use professional judgment to evaluate the DMC and %RSD/%D data in conjunction with the DMC recoveries to determine the need of qualification the data.

#### Action:

- 1. If a CCV (opening and closing) was not run at the appropriate frequency, qualify data using professional judgment.
- 2. Qualify all volatile target compounds in Table shown before using the following criteria:
  - a. For an opening CCV, if any volatile target compound has an RRF value less than the minimum criterion, use professional judgment for detects, based on mass spectral identification, to qualify the data as estimated (J) and qualify non-detected compounds as unusable (R).
  - b. For a closing CCV, if any volatile target compound has an RRF value less than the criteria, use professional judgment for detects based on mass spectral identification to qualify the data as estimated (J), and qualify non-detected compounds as unusable (R).
  - c. For an opening CCV, if the Percent Difference value for any of the volatile target compounds is outside the limits in calibration criteria Table shown before, qualify detects as estimated (J) and non-detected compounds as estimated (UJ).
  - For a closing CCV, if the Percent Difference value for any volatile target compound is outside the limits in calibration criteria table, qualify detects as estimated (J) and nondetected compounds as estimated (UJ).
  - e. If the volatile target compounds meet the acceptable criteria for RRF and the Percent Difference, no qualification of the data is necessary.
  - f. No qualification of the data is necessary on the DMC RRF and the Percent Difference data alone. Use professional judgment to evaluate the DMC RRF and Percent Difference

data in conjunction with the DMC recoveries to determine the need for qualification of data.

Notes: If the laboratory has failed to provide adequate calibration information, inform the Region's designated representative to contact the laboratory and request the necessary information. If the information is not available, the reviewer must use professional judgment to assess the data.

State in the Data Review Narrative, if possible, the potential effects on the data due to calibration criteria exceedance.

Note, for Contract Laboratory COR action, if calibration criteria are grossly exceeded.

Table. Continuing Calibration Actions for Low/Medium Volatile Analysis – Summary

| Criteria for Opening                                                            | Criteria for                                                                  | Ac                                     | ction                             |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------|-----------------------------------|
| CCV                                                                             | Closing CCV                                                                   | Detect                                 | Non-detect                        |
| CCV not performed<br>at required frequency                                      | CCV not performed<br>at required<br>frequency                                 | Use professional judgment R            | Use professional<br>judgment<br>R |
| CCV not performed at specified concentration                                    | CCV not performed<br>at specified<br>concentration                            | Use professional judgment              | Use professional<br>judgment      |
| RRF < Minimum RRF in Table 2 for target analyte                                 | RRF < Minimum<br>RRF in Table for<br>target analyte                           | Use professional<br>judgment<br>J or R | R                                 |
| RRF > Minimum RRF in Table 2 for target analyte                                 | RRF ≥ Minimum<br>RRF in Table for<br>target analyte                           | No qualification                       | No qualification                  |
| %D outside the<br>Opening Maximum<br>%D limits in Table 2<br>for target analyte | %D outside the<br>Closing Maximum<br>%D limits in Table<br>for target analyte | J                                      | UJ                                |
| %D within the inclusive Opening Maximum %D limits in Table 2 for target analyte | %D within the inclusive Closing Maximum %D limits in Table—for target analyte | No qualification                       | No qualification                  |

| All criteria were met |
|-----------------------|
| Criteria were not met |
| and/or see belowX     |

CONCENTRATION

# BLANK ANALYSIS RESULTS (Sections 1 & 2)

LARID

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

The concentration of a target analyte in any blank must not exceed its Contract Required Quantitation Limit (CRQL) (2x CRQLs for Methylene chloride, Acetone, and 2-Butanone). TIC concentration in any blanks must be  $\leq 5.0 \,\mu\text{g/L}$  for water (0.0050 mg/L for TCLP leachate) and  $\leq 5.0 \,\mu\text{g/kg}$  for soil matrices.

# Laboratory blanks

DATE

The method blank, like any other sample in the SDG, must meet the technical acceptance criteria for sample analysis.

COMPOUND

LEVEL!

| ANALYZED              |                    | MATRIX           | COMI COND                    | UNITS                          |
|-----------------------|--------------------|------------------|------------------------------|--------------------------------|
|                       |                    |                  | ks_except_in_the_cases_de    |                                |
|                       |                    | •                |                              |                                |
|                       |                    | analyte detec    | ted in method blank below re |                                |
| Field/ <u>Equipme</u> | ent/Trip blank     |                  |                              |                                |
| If field or trip b    | lanks are present, | the data revi    | ewer should evaluate this da | ata in a similar fashion as th |
| DATE<br>ANALYZED      | LAB ID             | LEVEL/<br>MATRIX | COMPOUND                     | CONCENTRATION UNITS            |
|                       |                    |                  | ent/trip_blanksNo_field_bla  |                                |
| <del></del>           | <u>.</u>           |                  |                              |                                |
|                       |                    |                  |                              | X                              |
|                       |                    |                  |                              |                                |
|                       | <del></del>        |                  |                              |                                |

| All criteria were met _X |
|--------------------------|
| Criteria were not met    |
| and/or see below         |

# BLANK ANALYSIS RESULTS (Section 3)

#### **Blank Actions**

Note:

All fields blank results associated with a particular group of samples (may exceed one per case) must be used to qualify data. Trip blanks are used to qualify only those samples with which they were shipped. Blanks may not be qualified because of contamination in another blank. Field blanks and trip blanks must be qualified for system monitoring compounds, instrument performance criteria, and spectral or calibration QC problems.

Samples taken from a drinking water tap do not have associated field blanks.

When applied as described in the Table below, the contaminant concentration in the blank is multiplied by the sample dilution factor.

Table. Blank and TCLP/SPLP LEB Actions for Low/Medium Volatile Analysis

| Blank Type         | Blank Result  | Sample Result                                              | Action for Samples            |
|--------------------|---------------|------------------------------------------------------------|-------------------------------|
|                    | Detects       | Not detected                                               | No qualification required     |
|                    | < CRQL *      | <crql*< td=""><td>Report CRQL value with a U</td></crql*<> | Report CRQL value with a U    |
|                    | CRQL          | ≥CRQL*                                                     | No qualification required     |
| Method,            |               | < CRQL*                                                    | Report CRQL value with a U    |
| Storage, Field,    | > CRQL *      | ≥ CRQL* and ≤                                              | Report blank value for sample |
| Trip,<br>TCLP/SPLP |               | blank concentration                                        | concentration with a U        |
|                    |               | ≥CRQL* and>                                                | No qualification required     |
| LEB,               |               | blank concentration                                        | 110 quantienton required      |
| Instrument**       | = CRQL*       | <u>≤</u> CRQL*                                             | Report CRQL value with a U    |
|                    | CRQL          | > CRQL*                                                    | No qualification required     |
|                    | Gross         | Detects                                                    | Report blank value for sample |
|                    | contamination | Detects                                                    | concentration with a U        |

<sup>\* 2</sup>x the CRQL for methylene chloride, 2-butanone and acetone.

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

<sup>\*\*</sup> Qualifications based on instrument blank results affect only the sample analyzed immediately after the sample that has target compounds that exceed the calibration range or non-target compounds that exceed 100 µg/L.

# Notes:

High and low level blanks must be treated separately Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

| CONTAMINATION SOURCE/LEVEL | COMPOUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CONC/UNITS | AL/UNITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SQL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AFFECTED<br>SAMPLES |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - matrices          |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THE REAL PROPERTY.  |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A STATE OF THE PARTY OF THE PAR |                     |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | - No. of the last  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | and the same of th |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|                            | The state of the s |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Value -                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |

| All criteria were met _X |
|--------------------------|
| Criteria were not mel    |
| and/or see below         |

# DEUTERATED MONITORING COMPOUNDS (DMCs)

Laboratory performance of individual samples is established by evaluation of surrogate spike (DMCs) recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

Table. Volatile Deuterated Monitoring Compounds (DMCs) and Recovery Limits

| DMC                    | %R for Water Sample | %R for Soil Sample |
|------------------------|---------------------|--------------------|
| Vinyl chloride-d3      | 60-135              | 30-150             |
| Chloroethane-d5        | 70-130              | 30-150             |
| 1,1-Dichloroethene-d2  | 60-125              | 45-110             |
| 2-Butanone-d5          | 40-130              | 20-135             |
| Chloroform-d           | 70-125              | 40-150             |
| 1,2-Dichloroethane-d4  | 70-125              | 70-130             |
| Benzene-d6             | 70-125              | 20-135             |
| 1,2-Dichloropropane-d6 | 70-120              | 70-120             |
| Toluene-d8             | 80-120              | 30-130             |
| trans-1,3-             | 60-125              | 30-135             |
| Dichloropropene-d4     |                     |                    |
| 2-Hexanone-d5          | 45-130              | 20-135             |
| 1,1,2,2-               | 65-120              | 45-120             |
| Tetrachloroethane-d2   |                     |                    |
| 1,2-Dichlorobenzene-d4 | 80-120              | 75-120             |

**NOTE:** The recovery limits for any of the compounds listed in the above Table may be expanded at any time during the period of performance if the United States Environmental Protection Agency (EPA) determines that the limits are too restrictive.

#### Action:

Are recoveries for DMCs in volatile samples and blanks must be within the limits specified in the Table above.

Yes? or No?

NOTE: The recovery limits for any of the compounds listed in the Table above may be expanded at any time during the period of performance if USEPA determines that the limits are too restrictive.

List the DMCs that may fail to meet the recovery limits

Sample ID

Date

**DMCs** 

% Recovery

Action

DMCs recoveries within the required limit. Other non-deuterated surrogates added to the samples within laboratory control limits.

Note: Any sample which has more than 3 DMCs outside the limits must be reanalyzed.

#### Action:

- 1. For any recovery greater than the upper acceptance limit:
  - Qualify detected associated volatile target compounds as estimated high (J+).
  - b. Do not qualify non-detected associated volatile target compounds.
- 2. For any recovery greater than or equal to 10%, and less than the lower acceptance limit:
  - Qualify detected associated volatile target compounds as estimated low (J-).
  - b. Qualify non-detected associated volatile target compounds as estimated (UJ).
- 3. For any recovery less than 10%:
  - Qualify detected associated volatile target compounds as estimated low (J-).
  - b. Qualify non-detected associated volatile target compounds as unusable (R).
- 4. For any recovery within acceptance limits, no qualification of the data is necessary.
- 5. In the special case of a blank analysis having DMCs out of specification, the reviewer must give special consideration to the validity of associated sample data. The basic concern is whether the blank problems represent an isolated problem with the blank alone, or whether there is a fundamental problem with the analytical process. For example, if one or more samples in the batch show acceptable DMC recoveries, the reviewer may choose to consider the blank problem to be an isolated occurrence. However, even if this judgment allows some use of the affected data, note analytical problems for Contract Laboratory COR action.
- 6. If more than three DMCs are outside of the recovery limits for Low/Medium volatiles analysis and the sample was not reanalyzed, note under Contract Problems/Non-Compliance.

Table. Deuterated Monitoring Compound (DMC) Recovery Actions for Low/Medium Volatiles Analyses – Summary

|                                                                | Action                         |                                      |  |  |  |  |
|----------------------------------------------------------------|--------------------------------|--------------------------------------|--|--|--|--|
| Criteria                                                       | Detect Associated<br>Compounds | Non-detected Associated<br>Compounds |  |  |  |  |
| %R < 10%                                                       | J-                             | R                                    |  |  |  |  |
| 10% ≤ %R < Lower Acceptance Limit                              | J-                             | UJ                                   |  |  |  |  |
| Lower Acceptance Limit $\leq$ %R $\leq$ Upper Acceptance Limit | No qualification               | No qualification                     |  |  |  |  |
| %R > Upper Acceptance Limit                                    | J+                             | No qualification                     |  |  |  |  |

# TABLE. VOLATILE DEUTERATED MONITORING COMPOUNDS (DMCs) AND THE ASSOCIATED TARGET COMPOUNDS

| Vinyl chloride-ds (DMC-1)             | Chloroethane-ds (DMC-2)                                  | 1,1-Dichloroethene-d2 (DMC-3)                                            |
|---------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------|
| Vinyl chloride                        | Dichlorodifluoromethane<br>Chloromethane<br>Bromomethane | trans-1,2-Dichloroethene<br>cis-1,2-Dichloroethene<br>1,1-Dichloroethene |
|                                       | Chloroethane<br>Carbon disulfide                         |                                                                          |
| 2-Butanone-ds (DMC-4)                 | Chloroform-d (DMC-5)                                     | 1,2-Dichloroethane-da (DMC-6)                                            |
| Acetone                               | 1,1-Dichloroethane                                       | Trichlorofluoromethane                                                   |
| 2-Butanone                            | Bromochloromethane                                       | 1,1,2-Trichloro-1,2,2-trifluoroethane                                    |
|                                       | Chloroform                                               | Methyl acetate                                                           |
|                                       | Dibromochloromethane Bromoform                           | Methylene chloride                                                       |
|                                       | promotom                                                 | Methyl-tert-butyl ether 1.1.1-Trichloroethane                            |
|                                       |                                                          | Carbon tetrachloride                                                     |
|                                       |                                                          | 1.2-Dibromoethane                                                        |
|                                       |                                                          | 1.2-Dichloroethane                                                       |
| Benzene-de (DMC-7)                    | 1.2 Dieklanennen de                                      |                                                                          |
| Denzene-da (DMC-7)                    | 1,2-Dichloropropane-ds (DMC-8)                           | Toluene-da (DMC-9)                                                       |
| Benzene                               | Cyclohexane                                              | Trichloroethene                                                          |
|                                       | Methylcyclohexane                                        | Toluene                                                                  |
|                                       | 1,2-Dichloropropane                                      | Tetrachloroethene                                                        |
|                                       | Bromodichloromethane                                     | Ethylbenzene                                                             |
|                                       |                                                          | o-Xylene                                                                 |
|                                       |                                                          | nı.p-Xylene                                                              |
|                                       |                                                          | Styrene<br>Isopropylbenzene                                              |
| toons 1.2 Disklasses as 1             | 0.77                                                     | * * * * * * * * * * * * * * * * * * * *                                  |
| trans-1,3-Dichloropropene-d4 (DMC-10) | 2-Hexanone-ds (DMC-11)                                   | 1,1,2,2-Tetrachloroethane-d2<br>(DMC-12)                                 |
| cis-1,3-Dichloropropene               | 4-Methyl-2-pentanone                                     | 1,1,2,2,-Tetrachloroethane                                               |
| trans-1,3-Dichloropropene             | 2-Hexanone                                               | 1.2-Dibromo-3-chloropropane                                              |
| 1,1,2-Trichloroethane                 |                                                          |                                                                          |
| 1,2-Dichlorobenzene-da                |                                                          |                                                                          |
| (DMC-13)                              |                                                          |                                                                          |
| Chlorobenzene                         |                                                          |                                                                          |
| 1,3-Dichlorobenzene                   |                                                          |                                                                          |
| 1,4-Dichlorobenzene                   |                                                          |                                                                          |
| 1,2-Dichlorobenzene                   |                                                          |                                                                          |
| 1,2,4-Trichlorobenzene                |                                                          |                                                                          |
| 1,2,3-Trichlorobenzene                |                                                          |                                                                          |

| All criteria were met |
|-----------------------|
| Criteria were not met |
| and/or see belowX     |

# MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

NOTES:

Data for MS and MSDs will not be present unless requested by the Region.

Notify the Contract Laboratory COR if a field or trip blank was used for the MS and MSD.

For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

#### MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do not meet the criteria.

| Sample ID:_ FA34192-5MS/5MSD | Matrix/Level: | _Soil    |
|------------------------------|---------------|----------|
| Sample ID:_ FA34192-1MS/1MSD | Matrix/Level: | _Aqueous |
|                              | -             | - · -    |

The QC reported here applies to the following samples: FA34192-5; FA34192-6

Method: SW846 8260C

| Compound                                                                          | FA3419<br>ug/kg              | )2-5<br>Q | Spike<br>ug/kg                      | MS<br>ug/kg                        | MS<br>%                           | Spike<br>ug/kg                      | MSD<br>ug/kg                       | MSD<br>%                         | RPD                    | Limits<br>Rec/RPD                                             |
|-----------------------------------------------------------------------------------|------------------------------|-----------|-------------------------------------|------------------------------------|-----------------------------------|-------------------------------------|------------------------------------|----------------------------------|------------------------|---------------------------------------------------------------|
| Cyclohexane Dichlorodifluoromethane Ethylbenzene Methyl acetate Methylcyclohexane | ND<br>eND<br>5.9<br>ND<br>ND |           | 61.6<br>61.6<br>61.6<br>308<br>61.6 | 42.7<br>36.2<br>126<br>424<br>38.8 | 69*<br>59*<br>195*<br>138*<br>63* | 61.7<br>61.7<br>61.7<br>308<br>61.7 | 43.9<br>37.8<br>116<br>376<br>38.2 | 71*<br>61*<br>178*<br>122<br>62* | 3<br>4<br>8<br>12<br>2 | 73-126/32<br>68-168/29<br>77-123/31<br>67-137/30<br>75-128/31 |

Note: Qualify results in sample FA34192-5: analytes recovered below lower laboratory control limits but within generally acceptable limits are qualified as estimated (J) or (UJ). Analytes recovered above the upper control limits are qualified (J) for positive results, non-detects are accepted.

#### DATA REVIEW WORKSHEETS

- \* QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- \* If QC limits are not available, use limits of 70 130 %.

#### Actions:

1. No qualification of the data is necessary on MS and MSD data alone. However, using professional judgment, the validator may use the MS and MSD results in conjunction with other QC criteria and determine the need for some qualification of the data.

| QUALITY            | %R < LL | %R > UL |
|--------------------|---------|---------|
| Positive results   | J       | J       |
| Nondetects results | R       | Accept  |

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results  $\,$  (J). If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

| All criteria were met _X |
|--------------------------|
| Criteria were not met    |
| and/or see below         |

# LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

#### 1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD?

Yes

Yes

Yes

Yes

Yes

Yes

- \* QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit
- \* If QC limits are not available, use limits of 70 130 %.

#### Actions:

| QUALITY            | %R < LL | %R > UL |
|--------------------|---------|---------|
| Positive results   | J       | J       |
| Nondetects results | R       | Accept  |

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

# 2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

| rileria we<br>nd/or see |  |  |
|-------------------------|--|--|
|                         |  |  |
|                         |  |  |

All criteria were met

# IX. FIELD/LABORATORY DUPLICATE PRECISION

| Matrix: |
|---------|
|         |

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

**NOTE:** In the absence of QAPP guidance for validating data from field duplicates, the following action will be taken.

Identify which samples within the data package are field duplicates. Estimate the relative percent difference (RPD) between the values for each compound. Use professional judgment to note large RPDs (> 50%) in the narrative.

| COMPOUND                      | SQL      | SAMPLE CONC.                                        | DUPLICATE CONC.                                         | RPD                       | ACTION                                        |  |
|-------------------------------|----------|-----------------------------------------------------|---------------------------------------------------------|---------------------------|-----------------------------------------------|--|
|                               |          | <u> </u>                                            |                                                         | ļ                         |                                               |  |
| No field/labora assess precis | tory dup | <br> licate analyzed with<br>  within required crit | <br>this data package. MS/<br>eria, < 50 % for target a | <br>MSD % r<br> nalytes d | recoveries RPD used to letected in sample and |  |
| duplicate.                    |          |                                                     |                                                         |                           |                                               |  |
|                               |          |                                                     |                                                         |                           |                                               |  |
|                               |          |                                                     |                                                         |                           |                                               |  |

#### Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions are suggested based on professional judgment:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

| All criteria were met _ | X |
|-------------------------|---|
| Criteria were not met   |   |
| and/or see below        | 2 |

### X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

DATE SAMPLE ID IS OUT IS AREA ACCEPTABLE ACTION RANGE

Internal standard area counts within the required criteria.

#### Action:

- If an internal standard area count for a sample or blank is greater than 200.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration) (see Table below):
  - a. Qualify detects for compounds quantitated using that internal standard as estimated low (J-).
  - b. Do not qualify non-detected associated compounds.
- 2. If an internal standard area count for a sample or blank is less than 20.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration):
  - a. Qualify detects for compounds quantitated using that internal standard as estimated high (J+).
  - b. Qualify non-detected associated compounds as unusable (R).
- 3. If an internal standard area count for a sample or blank is greater than or equal to 20.0%, and less than or equal to 200% of the area for the associated standard opening CCV or mid-point standard from initial calibration, no qualification of the data is necessary.
- 4. If an internal standard RT varies by more than 30.0 seconds: Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.
- 5. If an internal standard RT varies by less than or equal to 30.0 seconds, no qualification of the data is necessary.

**Note:** Inform the Contract Laboratory Program Project Officer (CLP PO) if the internal standard performance criteria are grossly exceeded. Note in the Data Review Narrative potential effects on the data resulting from unacceptable internal standard performance.

- 6. If required internal standard compounds are not added to a sample or blank, qualify detects and non-detects as unusable (R).
- 7. If the required internal standard compound is not analyzed at the specified concentration in a sample or blank, use professional judgment to qualify detects and non-detects.

Table. Internal Standard Actions for Low/Medium Volatiles Analyses - Summary

|                                                                                                                                | Act                                  | Action                                   |  |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------|--|
| Criteria                                                                                                                       | Detected<br>Associated<br>Compounds* | Non-detected<br>Associated<br>Compounds* |  |
| Area counts > 200% of 12-hour standard (opening CCV or mid-point standard from initial calibration)                            | J-                                   | No<br>qualification                      |  |
| Area counts < 20% of 12-hour standard (opening CCV or mid-point standard from initial calibration)                             | J+                                   | R                                        |  |
| Area counts ≥ 50% but ≤ 200% of 12-hour standard (opening CCV or mid-point standard from initial calibration)                  | No qualification                     |                                          |  |
| RT difference > 30.0 seconds between samples and 12-hour standard (opening CCV or mid-point standard from initial calibration) | R **                                 | R                                        |  |
| RT difference ≤ 30.0 seconds between samples and 12-hour standard (opening CCV or mid-point standard from initial calibration) | No qual                              | fication                                 |  |

<sup>\*</sup> For volatile compounds associated to each internal standard, see TABLE - VOLATILE TARGET ANALYTES, DEUTERATED MONITORING COMPOUNDS WITH ASSOCIATED INTERNAL STANDARDS FOR QUANTITATION in SOM02.2, Exhibit D, available at: http://www.epa.gov/superfund/programs/clp/download/som/som22d.pdf \*\* Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.

|                                |                                                                                                                                                                                                                                                                                        | Criteria were metX  Criteria were not met and/or see below                                              |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| TARGET CO                      | MPOUND IDENTIFICATION                                                                                                                                                                                                                                                                  |                                                                                                         |
| Criteria:                      |                                                                                                                                                                                                                                                                                        |                                                                                                         |
| Is the Relativ<br>RRT [opening | ve Retention Times (RRTs) of reported compour<br>g Continuing Calibration Verification (CCV) or mi                                                                                                                                                                                     | nds within ±0.06 RRT units of the standard id-point standard from the initial calibration]. Yes? or No? |
| List compoun                   | nds not meeting the criteria described above:                                                                                                                                                                                                                                          |                                                                                                         |
| Sample ID                      | Compounds                                                                                                                                                                                                                                                                              | Actions                                                                                                 |
|                                |                                                                                                                                                                                                                                                                                        | ——————————————————————————————————————                                                                  |
|                                |                                                                                                                                                                                                                                                                                        |                                                                                                         |
| _                              |                                                                                                                                                                                                                                                                                        | · · · · · · · · · · · · · · · · · · ·                                                                   |
| spectrum from                  | a of the sample compound and a current labor method the associated calibration standard (opening nust match according to the following criteria:  All ions present in the standard mass spectromust be present in the sample spectrum.  The relative intensities of these ions must ag | ng CCV or mid-point standard from initial um at a relative intensity greater than 10%                   |
|                                | sample spectra (e.g., for an ion with an abuncorresponding sample ion abundance must b                                                                                                                                                                                                 | dance of 50% in the standard spectrum, the                                                              |
| C.                             | lons present at greater than 10% in the sam<br>standard spectrum, must be evaluated by<br>interpretation.                                                                                                                                                                              |                                                                                                         |
| List compoun                   | ds not meeting the criteria described above:                                                                                                                                                                                                                                           |                                                                                                         |
| Sample ID                      | Compounds                                                                                                                                                                                                                                                                              | Actions                                                                                                 |
|                                |                                                                                                                                                                                                                                                                                        |                                                                                                         |
|                                |                                                                                                                                                                                                                                                                                        |                                                                                                         |
|                                |                                                                                                                                                                                                                                                                                        | -                                                                                                       |

#### Action:

- 1. The application of qualitative criteria for GC/MS analysis of target compounds requires professional judgment. It is up to the reviewer's discretion to obtain additional information from the laboratory. If it is determined that incorrect identifications were made, qualify all such data as unusable (R).
- 2. Use professional judgment to qualify the data if it is determined that cross-contamination has occurred.
- Note in the Data Review Narrative any changes made to the reported compounds or concerns regarding target compound identifications. Note, for Contract Laboratory COR action, the necessity for numerous or significant changes.

# TENTATIVELY IDENTIFIED COMPOUNDS (TICS)

NOTE: Tentatively identified compounds should only be evaluated when requested by a party from outside of the Hazardous Waste Support Section (HWSS).

List TICs

| Sample ID | Compound | Sample ID | Compound |
|-----------|----------|-----------|----------|
|           |          |           |          |
|           |          |           |          |
|           |          |           |          |

#### Action:

- 1. Qualify all TIC results for which there is presumptive evidence of a match (e.g. greater than or equal to 85% match) as tentatively identified (NJ), with approximated concentrations. TICs labeled "unknown" are qualified as estimated (J).
- 2. General actions related to the review of TIC results are as follows:
  - a. If it is determined that a tentative identification of a non-target compound is unacceptable, change the tentative identification to "unknown" or another appropriate identification, and qualify the result as estimated (J).
  - b. If all contractually-required peaks were not library searched and quantitated, the Region's designated representative may request these data from the laboratory.
- 3. In deciding whether a library search result for a TIC represents a reasonable identification, use professional judgment. If there is more than one possible match, report the result as "either compound X or compound Y". If there is a lack of isomer specificity, change the TIC result to a nonspecific isomer result (e.g., 1,3,5-trimethyl benzene to trimethyl benzene isomer) or to a compound class (e.g., 2-methyl, 3-ethyl benzene to a substituted aromatic compound).

### DATA REVIEW WORKSHEETS

- 4. The reviewer may elect to report all similar compounds as a total (e.g., all alkanes may be summarized and reported as total hydrocarbons).
- 5. Target compounds from other fractions and suspected laboratory contaminants should be marked as "non-reportable".
- 6. Other Case factors may influence TIC judgments. If a sample TIC match is poor, but other samples have a TIC with a valid library match, similar RRT, and the same ions, infer identification information from the other sample TIC results.
- 7. Note in the Data Review Narrative any changes made to the reported data or any concerns regarding TIC identifications.
- 8. Note, for Contract Laboratory COR action, failure to properly evaluate and report TICs

| All criteria were met _ | _X_ |  |
|-------------------------|-----|--|
| Criteria were not met   |     |  |
| and/or see below        |     |  |

# SAMPLE QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

#### Action:

- 1. If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.
- 2. For non-aqueous samples, in the percent moisture is less than 70.0%, no qualification of the data is necessary. If the percent moisture is greater than or equal to 70.0% and less than 90.0%, qualify detects as estimated (J) and non-detects as approximated (UJ). If the percent moisture is greater than or equal to 90.0%, qualify detects as estimated (J) and non-detects as unusable (R) (see Table below).
- 3. Note, for Contract Laboratory COR action, numerous or significant failures to accurately quantify the target compounds or to properly evaluate and adjust CRQLs.
- 4. Results between MDL and CRQL should be qualified as estimated "J".
- 5. Results < MDL should be reported at the CRQL and qualified "U". MDLs themselves are not reported.

Table. Percent Moisture Actions for Low/Medium Volatiles Analysis for Non-Aqueous Samples

| Criteria                 |                               | Action                            |  |
|--------------------------|-------------------------------|-----------------------------------|--|
| _                        | Detected Associated Compounds | Non-detected Associated Compounds |  |
| % Moisture < 70.0        | No qualification              |                                   |  |
| 70.0 < % Moisture < 90.0 | J                             | UJ                                |  |
| % Moisture > 90.0        | J                             | R                                 |  |

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

Sample ID

FA34192-1

1.2-dichlorobenzene

RF = 1.355

[] = (46511)(50)/(1.355)(456656) = 3.76 ppb Ok

| All criteria were metX |  |
|------------------------|--|
| Criteria were not met  |  |
| and/or see below       |  |

| B. | Percent Solids                        |  |
|----|---------------------------------------|--|
|    | List samples which have ≥ 70 % solids |  |
|    |                                       |  |
|    |                                       |  |
|    |                                       |  |
|    |                                       |  |

# QUANTITATION LIMITS

# A. Dilution performed

| SAMPLE ID  | DILUTION FACTOR | REASON FOR DILUTION                                                |
|------------|-----------------|--------------------------------------------------------------------|
| FA34192-6  | 10 X            | Ethylbenzene, m- + p-xylenes, and o xylenes over calibration range |
|            |                 |                                                                    |
|            |                 | 122                                                                |
|            |                 | 200                                                                |
|            |                 |                                                                    |
|            |                 | 000                                                                |
| <u>.</u> . | 100             | 1                                                                  |
|            | - COL           |                                                                    |
|            |                 |                                                                    |
|            | 132             |                                                                    |
| 100        |                 |                                                                    |
|            |                 |                                                                    |
|            |                 |                                                                    |
|            |                 |                                                                    |
|            |                 |                                                                    |

\_be\_used\_for\_decission\_purposes.\_\_\_\_

|           |                       |                                        | All criteria were metX                                                                            |  |
|-----------|-----------------------|----------------------------------------|---------------------------------------------------------------------------------------------------|--|
| OTHE      | R ISSUES              | Criteria were not met and/or see below |                                                                                                   |  |
| A.        | System Performan      | се                                     |                                                                                                   |  |
| List sa   | imples qualified base | d on the degradation of system         | performance during simple analysis:                                                               |  |
| Sample ID |                       | Comments                               | Actions                                                                                           |  |
| Action    | :                     |                                        |                                                                                                   |  |
| during    | sample analyses.      |                                        | mined that system performance has degra<br>y Program COR any action as a result<br>cted the data. |  |
| B.        | Overall Assessmen     | t of Data                              |                                                                                                   |  |
| List sa   | mples qualified base  | d on other issues:                     |                                                                                                   |  |
| Sampl     | e ID                  | Comments                               | Actions                                                                                           |  |

#### Action:

1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed.

\_No\_additional\_issues\_observed\_that\_require\_qualification\_of\_the\_data. Results are valid and can

2. Write a brief narrative to give the user an indication of the analytical limitations of the data. Inform the Contract Laboratory COR the action, any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).